January 18, 2021

## An Introduction to Probability and Statistical Inference Author : George G. Roussas
Release Date : 2014-10-21
Category : Mathematics
Total pages :624

## Probability and Statistical Inference Publisher : CRC Press
Release Date : 2000-03-22
Category : Mathematics
Total pages :665

Priced very competitively compared with other textbooks at this level! This gracefully organized textbook reveals the rigorous theory of probability and statistical inference in the style of a tutorial, using worked examples, exercises, numerous figures and tables, and computer simulations to develop and illustrate concepts. Beginning with an introduction to the basic ideas and techniques in probability theory and progressing to more rigorous topics, Probability and Statistical Inference studies the Helmert transformation for normal distributions and the waiting time between failures for exponential distributions develops notions of convergence in probability and distribution spotlights the central limit theorem (CLT) for the sample variance introduces sampling distributions and the Cornish-Fisher expansions concentrates on the fundamentals of sufficiency, information, completeness, and ancillarity explains Basu's Theorem as well as location, scale, and location-scale families of distributions covers moment estimators, maximum likelihood estimators (MLE), Rao-Blackwellization, and the Cramér-Rao inequality discusses uniformly minimum variance unbiased estimators (UMVUE) and Lehmann-Scheffé Theorems focuses on the Neyman-Pearson theory of most powerful (MP) and uniformly most powerful (UMP) tests of hypotheses, as well as confidence intervals includes the likelihood ratio (LR) tests for the mean, variance, and correlation coefficient summarizes Bayesian methods describes the monotone likelihood ratio (MLR) property handles variance stabilizing transformations provides a historical context for statistics and statistical discoveries showcases great statisticians through biographical notes Employing over 1400 equations to reinforce its subject matter, Probability and Statistical Inference is a groundbreaking text for first-year graduate and upper-level undergraduate courses in probability and statistical inference who have completed a calculus prerequisite, as well as a supplemental text for classes in Advanced Statistical Inference or Decision Theory.

## Probability and Statistical Inference Author : Robert V. Hogg,Elliot A. Tanis
Publisher : Unknown
Release Date : 2006
Category : Mathematical statistics
Total pages :735

Presenting an introduction to the mathematics of probability and statistics, this work emphasizes the existence of variation in various processes, and how the study of probability and statistics helps us understand this variability. It reinforces basic mathematical concepts with numerous examples and applications.

## Introduction to Probability Author : George G. Roussas
Release Date : 2013-11-27
Category : Mathematics
Total pages :546

Introduction to Probability, Second Edition, discusses probability theory in a mathematically rigorous, yet accessible way. This one-semester basic probability textbook explains important concepts of probability while providing useful exercises and examples of real world applications for students to consider. This edition demonstrates the applicability of probability to many human activities with examples and illustrations. After introducing fundamental probability concepts, the book proceeds to topics including conditional probability and independence; numerical characteristics of a random variable; special distributions; joint probability density function of two random variables and related quantities; joint moment generating function, covariance and correlation coefficient of two random variables; transformation of random variables; the Weak Law of Large Numbers; the Central Limit Theorem; and statistical inference. Each section provides relevant proofs, followed by exercises and useful hints. Answers to even-numbered exercises are given and detailed answers to all exercises are available to instructors on the book companion site. This book will be of interest to upper level undergraduate students and graduate level students in statistics, mathematics, engineering, computer science, operations research, actuarial science, biological sciences, economics, physics, and some of the social sciences. Demonstrates the applicability of probability to many human activities with examples and illustrations Discusses probability theory in a mathematically rigorous, yet accessible way Each section provides relevant proofs, and is followed by exercises and useful hints Answers to even-numbered exercises are provided and detailed answers to all exercises are available to instructors on the book companion site

## Probably Not Author : Lawrence N. Dworsky
Publisher : John Wiley & Sons
Release Date : 2019-09-04
Category : Mathematics
Total pages :352

A revised edition that explores random numbers, probability, and statistical inference at an introductory mathematical level Written in an engaging and entertaining manner, the revised and updated second edition of Probably Not continues to offer an informative guide to probability and prediction. The expanded second edition contains problem and solution sets. In addition, the book’s illustrative examples reveal how we are living in a statistical world, what we can expect, what we really know based upon the information at hand and explains when we only think we know something. The author introduces the principles of probability and explains probability distribution functions. The book covers combined and conditional probabilities and contains a new section on Bayes Theorem and Bayesian Statistics, which features some simple examples including the Presecutor’s Paradox, and Bayesian vs. Frequentist thinking about statistics. New to this edition is a chapter on Benford’s Law that explores measuring the compliance and financial fraud detection using Benford’s Law. This book: Contains relevant mathematics and examples that demonstrate how to use the concepts presented Features a new chapter on Benford’s Law that explains why we find Benford’s law upheld in so many, but not all, natural situations Presents updated Life insurance tables Contains updates on the Gantt Chart example that further develops the discussion of random events Offers a companion site featuring solutions to the problem sets within the book Written for mathematics and statistics students and professionals, the updated edition of Probably Not: Future Prediction Using Probability and Statistical Inference, Second Edition combines the mathematics of probability with real-world examples. LAWRENCE N. DWORSKY, PhD, is a retired Vice President of the Technical Staff and Director of Motorola’s Components Research Laboratory in Schaumburg, Illinois, USA. He is the author of Introduction to Numerical Electrostatics Using MATLAB from Wiley.

## Probability and Statistical Inference Publisher : John Wiley & Sons
Release Date : 2007-11-16
Category : Mathematics
Total pages :672

Now updated in a valuable new edition—this user-friendly book focuses on understanding the "why" of mathematical statistics Probability and Statistical Inference, Second Edition introduces key probability and statis-tical concepts through non-trivial, real-world examples and promotes the developmentof intuition rather than simple application. With its coverage of the recent advancements in computer-intensive methods, this update successfully provides the comp-rehensive tools needed to develop a broad understanding of the theory of statisticsand its probabilistic foundations. This outstanding new edition continues to encouragereaders to recognize and fully understand the why, not just the how, behind the concepts,theorems, and methods of statistics. Clear explanations are presented and appliedto various examples that help to impart a deeper understanding of theorems and methods—from fundamental statistical concepts to computational details. Additional features of this Second Edition include: A new chapter on random samples Coverage of computer-intensive techniques in statistical inference featuring Monte Carlo and resampling methods, such as bootstrap and permutation tests, bootstrap confidence intervals with supporting R codes, and additional examples available via the book's FTP site Treatment of survival and hazard function, methods of obtaining estimators, and Bayes estimating Real-world examples that illuminate presented concepts Exercises at the end of each section Providing a straightforward, contemporary approach to modern-day statistical applications, Probability and Statistical Inference, Second Edition is an ideal text for advanced undergraduate- and graduate-level courses in probability and statistical inference. It also serves as a valuable reference for practitioners in any discipline who wish to gain further insight into the latest statistical tools.

## Introduction to Probability Theory and Statistical Inference Author : Harold J. Larson
Publisher : Unknown
Release Date : 1969
Category : Mathematical statistics
Total pages :387

## Probability and Statistical Inference Author : Robert V. Hogg,Elliot A. Tanis,Dale L. Zimmerman
Publisher : Pearson
Release Date : 2019-01-11
Category :
Total pages :560

For one- or two-semester courses in Probability, Probability & Statistics, or Mathematical Statistics. An authoritative introduction to an in-demand field Advances in computing technology - particularly in science and business - have increased the need for more statistical scientists to examine the huge amount of data being collected. Written by veteran statisticians, Probability and Statistical Inference, 10th Edition emphasizes the existence of variation in almost every process, and how the study of probability and statistics helps us understand this variation. This applied introduction to probability and statistics reinforces basic mathematical concepts with numerous real-world examples and applications to illustrate the relevance of key concepts. It is designed for a two-semester course, but it can be adapted for a one-semester course. A good calculus background is needed, but no previous study of probability or statistics is required. 013518939X / 9780135189399 PROBABILITY AND STATISTICAL INFERENCE, 10/e

## An Introduction to Probability and Statistics Author : Vijay K. Rohatgi,A. K. Md. Ehsanes Saleh
Publisher : John Wiley & Sons
Release Date : 2011-09-15
Category : Mathematics
Total pages :744

The second edition of a well-received book that was published 24 years ago and continues to sell to this day, An Introduction to Probability and Statistics is now revised to incorporate new information as well as substantial updates of existing material.

## Introduction to Probability Theory and Statistical Inference Author : Harold J. Larson
Publisher : Unknown
Release Date : 1982
Category : Mathematical statistics
Total pages :637

## An Introduction to Statistical Inference and Its Applications with R Author : Michael W. Trosset
Publisher : CRC Press
Release Date : 2009-06-23
Category : Mathematics
Total pages :496

Emphasizing concepts rather than recipes, An Introduction to Statistical Inference and Its Applications with R provides a clear exposition of the methods of statistical inference for students who are comfortable with mathematical notation. Numerous examples, case studies, and exercises are included. R is used to simplify computation, create figures

## Probability Theory and Statistical Inference Author : Aris Spanos
Publisher : Cambridge University Press
Release Date : 2019-08-31
Total pages :846

This empirical research methods course enables informed implementation of statistical procedures, giving rise to trustworthy evidence.

## Introduction to Statistical Inference Author : Jack C. Kiefer
Publisher : Springer Science & Business Media
Release Date : 2012-12-06
Category : Mathematics
Total pages :334

This book is based upon lecture notes developed by Jack Kiefer for a course in statistical inference he taught at Cornell University. The notes were distributed to the class in lieu of a textbook, and the problems were used for homework assignments. Relying only on modest prerequisites of probability theory and cal culus, Kiefer's approach to a first course in statistics is to present the central ideas of the modem mathematical theory with a minimum of fuss and formality. He is able to do this by using a rich mixture of examples, pictures, and math ematical derivations to complement a clear and logical discussion of the important ideas in plain English. The straightforwardness of Kiefer's presentation is remarkable in view of the sophistication and depth of his examination of the major theme: How should an intelligent person formulate a statistical problem and choose a statistical procedure to apply to it? Kiefer's view, in the same spirit as Neyman and Wald, is that one should try to assess the consequences of a statistical choice in some quan titative (frequentist) formulation and ought to choose a course of action that is verifiably optimal (or nearly so) without regard to the perceived "attractiveness" of certain dogmas and methods.

## Probability and Statistics Author : Michael J. Evans,Jeffrey S. Rosenthal
Publisher : WH Freeman
Release Date : 2010-03-01
Category : Mathematics
Total pages :200

Unlike traditional introductory math/stat textbooks, Probability and Statistics: The Science of Uncertainty brings a modern flavor to the course, incorporating the computer and offering an integrated approach to inference that includes the frequency approach and the Bayesian inference. From the start the book integrates simulations into its theoretical coverage, and emphasizes the use of computer-powered computation throughout. Math and science majors with just one year of calculus can use this text and experience a refreshing blend of applications and theory that goes beyond merely mastering the technicalities. The new edition includes a number of features designed to make the material more accessible and level-appropriate to the students taking this course today.

## Probability and Statistical Inference Author : Robert V. Hogg,Elliot A. Tanis
Publisher : Macmillan College
Release Date : 1988
Category : Mathematical statistics
Total pages :658

This user-friendly introduction to the mathematics of probability and statistics (for readers with a background in calculus) uses numerous applications--drawn from biology, education, economics, engineering, environmental studies, exercise science, health science, manufacturing, opinion polls, psychology, sociology, and sports--to help explain and motivate the concepts. A review of selected mathematical techniques is included, and an accompanying CD-ROM contains many of the figures (many animated), and the data included in the examples and exercises (stored in both Minitab compatible format and ASCII). Empirical and Probability Distributions. Probability. Discrete Distributions. Continuous Distributions. Multivariable Distributions. Sampling Distribution Theory. Importance of Understanding Variability. Estimation. Tests of Statistical Hypotheses. Theory of Statistical Inference. Quality Improvement Through Statistical Methods. For anyone interested in the Mathematics of Probability and Statistics.