November 23, 2020

Download Ebook Free Bayesian Data Analysis In Ecology Using Linear Models With R, BUGS, And Stan

Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and Stan

Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and Stan
Author : Franzi Korner-Nievergelt,Tobias Roth,Stefanie von Felten,Jérôme Guélat,Bettina Almasi,Pius Korner-Nievergelt
Publisher : Academic Press
Release Date : 2015-04-04
Category : Science
Total pages :328
GET BOOK

Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and STAN examines the Bayesian and frequentist methods of conducting data analyses. The book provides the theoretical background in an easy-to-understand approach, encouraging readers to examine the processes that generated their data. Including discussions of model selection, model checking, and multi-model inference, the book also uses effect plots that allow a natural interpretation of data. Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and STAN introduces Bayesian software, using R for the simple modes, and flexible Bayesian software (BUGS and Stan) for the more complicated ones. Guiding the ready from easy toward more complex (real) data analyses ina step-by-step manner, the book presents problems and solutions—including all R codes—that are most often applicable to other data and questions, making it an invaluable resource for analyzing a variety of data types. Introduces Bayesian data analysis, allowing users to obtain uncertainty measurements easily for any derived parameter of interest Written in a step-by-step approach that allows for eased understanding by non-statisticians Includes a companion website containing R-code to help users conduct Bayesian data analyses on their own data All example data as well as additional functions are provided in the R-package blmeco

Bayesian Models for Astrophysical Data

Bayesian Models for Astrophysical Data
Author : Joseph M. Hilbe,Rafael S. de Souza,Emille E. O. Ishida
Publisher : Cambridge University Press
Release Date : 2017-04-27
Category : Mathematics
Total pages :408
GET BOOK

A hands-on guide to Bayesian models with R, JAGS, Python, and Stan code, for a wide range of astronomical data types.

Spatial Data Analysis in Ecology and Agriculture Using R

Spatial Data Analysis in Ecology and Agriculture Using R
Author : Richard E. Plant
Publisher : CRC Press
Release Date : 2018-12-07
Category : Science
Total pages :666
GET BOOK

Key features: Unique in its combination of serving as an introduction to spatial statistics and to modeling agricultural and ecological data using R Provides exercises in each chapter to facilitate the book's use as a course textbook or for self-study Adds new material on generalized additive models, point pattern analysis, and new methods of Bayesian analysis of spatial data. Includes a completely revised chapter on the analysis of spatiotemporal data featuring recently introduced software and methods Updates its coverage of R software including newly introduced packages Spatial Data Analysis in Ecology and Agriculture Using R, 2nd Edition provides practical instruction on the use of the R programming language to analyze spatial data arising from research in ecology, agriculture, and environmental science. Readers have praised the book's practical coverage of spatial statistics, real-world examples, and user-friendly approach in presenting and explaining R code, aspects maintained in this update. Using data sets from cultivated and uncultivated ecosystems, the book guides the reader through the analysis of each data set, including setting research objectives, designing the sampling plan, data quality control, exploratory and confirmatory data analysis, and drawing scientific conclusions. Additional material to accompany the book, on both analyzing satellite data and on multivariate analysis, can be accessed at https://www.plantsciences.ucdavis.edu/plant/additionaltopics.htm.

Spatial Data Analysis in Ecology and Agriculture Using R, Second Edition

Spatial Data Analysis in Ecology and Agriculture Using R, Second Edition
Author : Richard E. Plant
Publisher : CRC Press
Release Date : 2018-12-07
Category : Technology & Engineering
Total pages :666
GET BOOK

Key features: Unique in its combination of serving as an introduction to spatial statistics and to modeling agricultural and ecological data using R Provides exercises in each chapter to facilitate the book's use as a course textbook or for self-study Adds new material on generalized additive models, point pattern analysis, and new methods of Bayesian analysis of spatial data. Includes a completely revised chapter on the analysis of spatiotemporal data featuring recently introduced software and methods Updates its coverage of R software including newly introduced packages Spatial Data Analysis in Ecology and Agriculture Using R, 2nd Edition provides practical instruction on the use of the R programming language to analyze spatial data arising from research in ecology, agriculture, and environmental science. Readers have praised the book's practical coverage of spatial statistics, real-world examples, and user-friendly approach in presenting and explaining R code, aspects maintained in this update. Using data sets from cultivated and uncultivated ecosystems, the book guides the reader through the analysis of each data set, including setting research objectives, designing the sampling plan, data quality control, exploratory and confirmatory data analysis, and drawing scientific conclusions. Additional material to accompany the book, on both analyzing satellite data and on multivariate analysis, can be accessed at https://www.plantsciences.ucdavis.edu/plant/additionaltopics.htm.

Applied Hierarchical Modeling in Ecology: Analysis of distribution, abundance and species richness in R and BUGS

Applied Hierarchical Modeling in Ecology: Analysis of distribution, abundance and species richness in R and BUGS
Author : Marc Kery,J. Andrew Royle
Publisher : Academic Press
Release Date : 2015-11-14
Category : Nature
Total pages :808
GET BOOK

Applied Hierarchical Modeling in Ecology: Distribution, Abundance, Species Richness offers a new synthesis of the state-of-the-art of hierarchical models for plant and animal distribution, abundance, and community characteristics such as species richness using data collected in metapopulation designs. These types of data are extremely widespread in ecology and its applications in such areas as biodiversity monitoring and fisheries and wildlife management. This first volume explains static models/procedures in the context of hierarchical models that collectively represent a unified approach to ecological research, taking the reader from design, through data collection, and into analyses using a very powerful class of models. Applied Hierarchical Modeling in Ecology, Volume 1 serves as an indispensable manual for practicing field biologists, and as a graduate-level text for students in ecology, conservation biology, fisheries/wildlife management, and related fields. Provides a synthesis of important classes of models about distribution, abundance, and species richness while accommodating imperfect detection Presents models and methods for identifying unmarked individuals and species Written in a step-by-step approach accessible to non-statisticians and provides fully worked examples that serve as a template for readers' analyses Includes companion website containing data sets, code, solutions to exercises, and further information

Introduction to WinBUGS for Ecologists

Introduction to WinBUGS for Ecologists
Author : Marc Kery
Publisher : Academic Press
Release Date : 2010-07-19
Category : Science
Total pages :320
GET BOOK

Introduction to WinBUGS for Ecologists introduces applied Bayesian modeling to ecologists using the highly acclaimed, free WinBUGS software. It offers an understanding of statistical models as abstract representations of the various processes that give rise to a data set. Such an understanding is basic to the development of inference models tailored to specific sampling and ecological scenarios. The book begins by presenting the advantages of a Bayesian approach to statistics and introducing the WinBUGS software. It reviews the four most common statistical distributions: the normal, the uniform, the binomial, and the Poisson. It describes the two different kinds of analysis of variance (ANOVA): one-way and two- or multiway. It looks at the general linear model, or ANCOVA, in R and WinBUGS. It introduces generalized linear model (GLM), i.e., the extension of the normal linear model to allow error distributions other than the normal. The GLM is then extended contain additional sources of random variation to become a generalized linear mixed model (GLMM) for a Poisson example and for a binomial example. The final two chapters showcase two fairly novel and nonstandard versions of a GLMM. The first is the site-occupancy model for species distributions; the second is the binomial (or N-) mixture model for estimation and modeling of abundance. Introduction to the essential theories of key models used by ecologists Complete juxtaposition of classical analyses in R and Bayesian analysis of the same models in WinBUGS Provides every detail of R and WinBUGS code required to conduct all analyses Companion Web Appendix that contains all code contained in the book and additional material (including more code and solutions to exercises)

Bayesian Models

Bayesian Models
Author : N. Thompson Hobbs,Mevin B. Hooten
Publisher : Princeton University Press
Release Date : 2015-08-04
Category : Science
Total pages :320
GET BOOK

Bayesian modeling has become an indispensable tool for ecological research because it is uniquely suited to deal with complexity in a statistically coherent way. This textbook provides a comprehensive and accessible introduction to the latest Bayesian methods—in language ecologists can understand. Unlike other books on the subject, this one emphasizes the principles behind the computations, giving ecologists a big-picture understanding of how to implement this powerful statistical approach. Bayesian Models is an essential primer for non-statisticians. It begins with a definition of probability and develops a step-by-step sequence of connected ideas, including basic distribution theory, network diagrams, hierarchical models, Markov chain Monte Carlo, and inference from single and multiple models. This unique book places less emphasis on computer coding, favoring instead a concise presentation of the mathematical statistics needed to understand how and why Bayesian analysis works. It also explains how to write out properly formulated hierarchical Bayesian models and use them in computing, research papers, and proposals. This primer enables ecologists to understand the statistical principles behind Bayesian modeling and apply them to research, teaching, policy, and management. Presents the mathematical and statistical foundations of Bayesian modeling in language accessible to non-statisticians Covers basic distribution theory, network diagrams, hierarchical models, Markov chain Monte Carlo, and more Deemphasizes computer coding in favor of basic principles Explains how to write out properly factored statistical expressions representing Bayesian models

Statistical Rethinking

Statistical Rethinking
Author : Richard McElreath
Publisher : CRC Press
Release Date : 2018-01-03
Category : Mathematics
Total pages :487
GET BOOK

Statistical Rethinking: A Bayesian Course with Examples in R and Stan builds readers’ knowledge of and confidence in statistical modeling. Reflecting the need for even minor programming in today’s model-based statistics, the book pushes readers to perform step-by-step calculations that are usually automated. This unique computational approach ensures that readers understand enough of the details to make reasonable choices and interpretations in their own modeling work. The text presents generalized linear multilevel models from a Bayesian perspective, relying on a simple logical interpretation of Bayesian probability and maximum entropy. It covers from the basics of regression to multilevel models. The author also discusses measurement error, missing data, and Gaussian process models for spatial and network autocorrelation. By using complete R code examples throughout, this book provides a practical foundation for performing statistical inference. Designed for both PhD students and seasoned professionals in the natural and social sciences, it prepares them for more advanced or specialized statistical modeling. Web Resource The book is accompanied by an R package (rethinking) that is available on the author’s website and GitHub. The two core functions (map and map2stan) of this package allow a variety of statistical models to be constructed from standard model formulas.

Doing Bayesian Data Analysis

Doing Bayesian Data Analysis
Author : John Kruschke
Publisher : Academic Press
Release Date : 2014-11-11
Category : Mathematics
Total pages :776
GET BOOK

Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan, Second Edition provides an accessible approach for conducting Bayesian data analysis, as material is explained clearly with concrete examples. Included are step-by-step instructions on how to carry out Bayesian data analyses in the popular and free software R and WinBugs, as well as new programs in JAGS and Stan. The new programs are designed to be much easier to use than the scripts in the first edition. In particular, there are now compact high-level scripts that make it easy to run the programs on your own data sets. The book is divided into three parts and begins with the basics: models, probability, Bayes’ rule, and the R programming language. The discussion then moves to the fundamentals applied to inferring a binomial probability, before concluding with chapters on the generalized linear model. Topics include metric-predicted variable on one or two groups; metric-predicted variable with one metric predictor; metric-predicted variable with multiple metric predictors; metric-predicted variable with one nominal predictor; and metric-predicted variable with multiple nominal predictors. The exercises found in the text have explicit purposes and guidelines for accomplishment. This book is intended for first-year graduate students or advanced undergraduates in statistics, data analysis, psychology, cognitive science, social sciences, clinical sciences, and consumer sciences in business. Accessible, including the basics of essential concepts of probability and random sampling Examples with R programming language and JAGS software Comprehensive coverage of all scenarios addressed by non-Bayesian textbooks: t-tests, analysis of variance (ANOVA) and comparisons in ANOVA, multiple regression, and chi-square (contingency table analysis) Coverage of experiment planning R and JAGS computer programming code on website Exercises have explicit purposes and guidelines for accomplishment Provides step-by-step instructions on how to conduct Bayesian data analyses in the popular and free software R and WinBugs

Ecological Models and Data in R

Ecological Models and Data in R
Author : Benjamin M. Bolker
Publisher : Princeton University Press
Release Date : 2008-07-21
Category : Computers
Total pages :396
GET BOOK

Introduction and background; Exploratory data analysis and graphics; Deterministic functions for ecological modeling; Probability and stochastic distributions for ecological modeling; Stochatsic simulation and power analysis; Likelihood and all that; Optimization and all that; Likelihood examples; Standar statistics revisited; Modeling variance; Dynamic models.

Bayesian Population Analysis Using WinBUGS

Bayesian Population Analysis Using WinBUGS
Author : Marc Kéry,Michael Schaub
Publisher : Academic Press
Release Date : 2012
Category : Science
Total pages :535
GET BOOK

Bayesian statistics has exploded into biology and its sub-disciplines, such as ecology, over the past decade. The free software program WinBUGS, and its open-source sister OpenBugs, is currently the only flexible and general-purpose program available with which the average ecologist can conduct standard and non-standard Bayesian statistics. Comprehensive and richly commented examples illustrate a wide range of models that are most relevant to the research of a modern population ecologist All WinBUGS/OpenBUGS analyses are completely integrated in software R Includes complete documentation of all R and WinBUGS code required to conduct analyses and shows all the necessary steps from having the data in a text file out of Excel to interpreting and processing the output from WinBUGS in R

Introduction to Bayesian Statistics

Introduction to Bayesian Statistics
Author : William M. Bolstad,James M. Curran
Publisher : John Wiley & Sons
Release Date : 2016-09-02
Category : Mathematics
Total pages :624
GET BOOK

"...this edition is useful and effective in teaching Bayesian inference at both elementary and intermediate levels. It is a well-written book on elementary Bayesian inference, and the material is easily accessible. It is both concise and timely, and provides a good collection of overviews and reviews of important tools used in Bayesian statistical methods." There is a strong upsurge in the use of Bayesian methods in applied statistical analysis, yet most introductory statistics texts only present frequentist methods. Bayesian statistics has many important advantages that students should learn about if they are going into fields where statistics will be used. In this third Edition, four newly-added chapters address topics that reflect the rapid advances in the field of Bayesian statistics. The authors continue to provide a Bayesian treatment of introductory statistical topics, such as scientific data gathering, discrete random variables, robust Bayesian methods, and Bayesian approaches to inference for discrete random variables, binomial proportions, Poisson, and normal means, and simple linear regression. In addition, more advanced topics in the field are presented in four new chapters: Bayesian inference for a normal with unknown mean and variance; Bayesian inference for a Multivariate Normal mean vector; Bayesian inference for the Multiple Linear Regression Model; and Computational Bayesian Statistics including Markov Chain Monte Carlo. The inclusion of these topics will facilitate readers' ability to advance from a minimal understanding of Statistics to the ability to tackle topics in more applied, advanced level books. Minitab macros and R functions are available on the book's related website to assist with chapter exercises. Introduction to Bayesian Statistics, Third Edition also features: Topics including the Joint Likelihood function and inference using independent Jeffreys priors and join conjugate prior The cutting-edge topic of computational Bayesian Statistics in a new chapter, with a unique focus on Markov Chain Monte Carlo methods Exercises throughout the book that have been updated to reflect new applications and the latest software applications Detailed appendices that guide readers through the use of R and Minitab software for Bayesian analysis and Monte Carlo simulations, with all related macros available on the book's website Introduction to Bayesian Statistics, Third Edition is a textbook for upper-undergraduate or first-year graduate level courses on introductory statistics course with a Bayesian emphasis. It can also be used as a reference work for statisticians who require a working knowledge of Bayesian statistics.

Computational Bayesian Statistics

Computational Bayesian Statistics
Author : M. Antónia Amaral Turkman,Carlos Daniel Paulino,Peter Müller
Publisher : Cambridge University Press
Release Date : 2019-02-28
Category : Business & Economics
Total pages :275
GET BOOK

This integrated introduction to fundamentals, computation, and software is your key to understanding and using advanced Bayesian methods.

Bayesian Analysis with Python

Bayesian Analysis with Python
Author : Osvaldo Martin
Publisher : Unknown
Release Date : 2016-11-25
Category : Bayesian statistical decision theory
Total pages :282
GET BOOK

Unleash the power and flexibility of the Bayesian frameworkAbout This Book- Simplify the Bayes process for solving complex statistical problems using Python; - Tutorial guide that will take the you through the journey of Bayesian analysis with the help of sample problems and practice exercises; - Learn how and when to use Bayesian analysis in your applications with this guide.Who This Book Is ForStudents, researchers and data scientists who wish to learn Bayesian data analysis with Python and implement probabilistic models in their day to day projects. Programming experience with Python is essential. No previous statistical knowledge is assumed.What You Will Learn- Understand the essentials Bayesian concepts from a practical point of view- Learn how to build probabilistic models using the Python library PyMC3- Acquire the skills to sanity-check your models and modify them if necessary- Add structure to your models and get the advantages of hierarchical models- Find out how different models can be used to answer different data analysis questions - When in doubt, learn to choose between alternative models.- Predict continuous target outcomes using regression analysis or assign classes using logistic and softmax regression.- Learn how to think probabilistically and unleash the power and flexibility of the Bayesian frameworkIn DetailThe purpose of this book is to teach the main concepts of Bayesian data analysis. We will learn how to effectively use PyMC3, a Python library for probabilistic programming, to perform Bayesian parameter estimation, to check models and validate them. This book begins presenting the key concepts of the Bayesian framework and the main advantages of this approach from a practical point of view. Moving on, we will explore the power and flexibility of generalized linear models and how to adapt them to a wide array of problems, including regression and classification. We will also look into mixture models and clustering data, and we will finish with advanced topics like non-parametrics models and Gaussian processes. With the help of Python and PyMC3 you will learn to implement, check and expand Bayesian models to solve data analysis problems.Style and approachBayes algorithms are widely used in statistics, machine learning, artificial intelligence, and data mining. This will be a practical guide allowing the readers to use Bayesian methods for statistical modelling and analysis using Python.

Let the Evidence Speak

Let the Evidence Speak
Author : Alan Jessop
Publisher : Springer
Release Date : 2018-05-31
Category : Mathematics
Total pages :226
GET BOOK

This book presents the most important ideas behind Bayes’ Rule in a form suitable for the general reader. It is written without formulae because they are not necessary; the ability to add and multiply is all that is needed. As well as showing in full the application of Bayes’ Rule to some quantitatively simple, though not trivial, examples, the book also convincingly demonstrates that some familiarity with Bayes’ Rule is helpful in thinking about how best to structure one’s thinking.