March 3, 2021

Download Ebook Free Biomaterials For 3D Tumor Modeling

Biomaterials for 3D Tumor Modeling

Biomaterials for 3D Tumor Modeling
Author : Subhas Kundu,Rui L. Reis
Publisher : Elsevier
Release Date : 2020-08-22
Category : Technology & Engineering
Total pages :772
GET BOOK

Biomaterials for 3D Tumor Modeling reviews the fundamentals and most relevant areas of the latest advances of research of 3D cancer models, focusing on biomaterials science, tissue engineering, drug delivery and screening aspects. The book reviews advanced fundamental topics, including the causes of cancer, existing cancer models, angiogenesis and inflammation during cancer progression, and metastasis in 3D biomaterials. Then, the most relevant biomaterials are reviewed, including methods for engineering and fabrication of biomaterials. 3D models for key biological systems and types of cancer are also discussed, including lung, liver, oral, prostate, pancreatic, ovarian, bone and pediatric cancer. This book is suitable for those working in the disciplines of materials science, biochemistry, genetics, molecular biology, drug delivery and regenerative medicine. Reviews key biomaterials topics, including synthetic biomaterials, hydrogels, e-spun materials and nanoparticles Provides a comprehensive overview of 3D cancer models for key biological systems and cancer types Includes an overview of advanced fundamental concepts for an interdisciplinary audience in materials science, biochemistry, regenerative medicine and drug delivery

Biofabrication and 3D Tissue Modeling

Biofabrication and 3D Tissue Modeling
Author : Dong-Woo Cho
Publisher : Royal Society of Chemistry
Release Date : 2019-01-02
Category : Technology & Engineering
Total pages :369
GET BOOK

3D tissue modelling is an emerging field used for the investigation of disease mechanisms and drug development. The two key drivers of this upsurge in research lie in its potential to offer a way to reduce animal testing with respect to biotoxicity analysis, preferably on physiology recapitulated human tissues and, additionally, it provides an alternative approach to regenerative medicine. Integrating physics, chemistry, materials science, and stem cell and biomedical engineering, this book provides a complete foundation to this exciting, and interdisciplinary field. Beginning with the basic principles of 3D tissue modelling, the reader will find expert reviews on key fabrication technologies and processes, including microfluidics, microfabrication technology such as 3D bioprinting, and programming approaches to emulating human tissue complexity. The next stage introduces the reader to a range of materials used for 3D tissue modelling, from synthetic to natural materials, as well as the emerging field of tissue derived decellularized extracellular matrix (dECM). A whole host of critical applications are covered, with several chapters dedicated to hard and soft tissues, as well as focused reviews on the respiratory and central nervous system. Finally, the development of in vitro tissue models to screen drugs and study progression and etiologies of diseases, with particular attention paid to cancer, can be found.

Biomaterials- and Microfluidics-Based Tissue Engineered 3D Models

Biomaterials- and Microfluidics-Based Tissue Engineered 3D Models
Author : J. Miguel Oliveira,Rui L. Reis
Publisher : Springer Nature
Release Date : 2020-04-13
Category : Medical
Total pages :175
GET BOOK

This contributed volume reviews the latest advances on relevant 3D tissue engineered in vitro models of disease making use of biomaterials and microfluidics. The main focus of this book is on advanced biomaterials and microfluidics technologies that have been used in in vitro mimetic 3D models of human diseases and show great promise in revolutionizing personalized medicine. Readers will discover important topics involving biomaterials and microfluidics design, advanced processing techniques, and development and validation of organ- and body-on-a-chip models for bone, liver, and cancer research. An in depth discussion of microfabrication methods for microfluidics development is also provided. This work is edited by two truly multidisciplinary scientists and includes important contributions from well-known experts in their fields. The work is written for both early stage and experienced researchers, and well-established scientists enrolled in the fields of biomaterials, microfluidics, and tissue engineering, and is especially suited to those who wish to become acquainted with the principles and latest developments of in vitro models of diseases, such as professionals working in pharma, medicine, and engineering.

Silk Biomaterials for Tissue Engineering and Regenerative Medicine

Silk Biomaterials for Tissue Engineering and Regenerative Medicine
Author : Subhas Kundu
Publisher : Elsevier
Release Date : 2014-03-24
Category : Medical
Total pages :582
GET BOOK

Silk is increasingly being used as a biomaterial for tissue engineering applications, as well as sutures, due to its unique mechanical and chemical properties. Silk Biomaterials for Tissue Engineering and Regenerative Medicine discusses the properties of silk that make it useful for medical purposes and its applications in this area. Part one introduces silk biomaterials, discussing their fundamentals and how they are processed, and considering different types of silk biomaterials. Part two focuses on the properties and behavior of silk biomaterials and the implications of this for their applications in biomedicine. These chapters focus on topics including biodegradation, bio-response to silk sericin, and capillary growth behavior in porous silk films. Finally, part three discusses the applications of silk biomaterials for tissue engineering, regenerative medicine, and biomedicine, with chapters on the use of silk biomaterials for vertebral, dental, dermal, and cardiac tissue engineering. Silk Biomaterials for Tissue Engineering and Regenerative Medicine is an important resource for materials and tissue engineering scientists, R&D departments in industry and academia, and academics with an interest in the fields of biomaterials and tissue engineering. Discusses the properties and applications of silk for medical purposes Considers pharmaceutical and cosmeceutical applications

3D Bioprinting and Nanotechnology in Tissue Engineering and Regenerative Medicine

3D Bioprinting and Nanotechnology in Tissue Engineering and Regenerative Medicine
Author : Lijie Grace Zhang,John P Fisher,Kam Leong
Publisher : Academic Press
Release Date : 2015-01-14
Category : Technology & Engineering
Total pages :392
GET BOOK

3D Bioprinting and Nanotechnology in Tissue Engineering provides an in depth introduction to these two technologies and their industrial applications. Stem cells in tissue regeneration are covered, along with nanobiomaterials. Commercialization, legal and regulatory considerations are also discussed in order to help you translate nanotechnology and 3D printing-based products to the marketplace and the clinic. Dr. Zhang’s and Dr. Fishers’ team of expert contributors have pooled their expertise in order to provide a summary of the suitability, sustainability and limitations of each technique for each specific application. The increasing availability and decreasing costs of nanotechnologies and 3D printing technologies are driving their use to meet medical needs, and this book provides an overview of these technologies and their integration. It shows how nanotechnology can increase the clinical efficiency of prosthesis or artificial tissues made by bioprinting or biofabrication. Students and professionals will receive a balanced assessment of relevant technology with theoretical foundation, while still learning about the newest printing techniques. Includes clinical applications, regulatory hurdles, and risk-benefit analysis of each technology. This book will assist you in selecting the best materials and identifying the right parameters for printing, plus incorporate cells and biologically active agents into a printed structure Learn the advantages of integrating 3D printing and nanotechnology in order to improve the safety of your nano-scale materials for biomedical applications

Biomaterials for Cancer Therapeutics

Biomaterials for Cancer Therapeutics
Author : Kinam Park
Publisher : Elsevier
Release Date : 2013-11-23
Category : Technology & Engineering
Total pages :530
GET BOOK

Cancer can affect people of all ages, and approximately one in three people are estimated to be diagnosed with cancer during their lifetime. Extensive research is being undertaken by many different institutions to explore potential new therapeutics, and biomaterials technology is now being developed to target, treat and prevent cancer. This unique book discusses the role and potential of biomaterials in treating this prevalent disease. The first part of the book discusses the fundamentals of biomaterials for cancer therapeutics. Chapters in part two discuss synthetic vaccines, proteins and polymers for cancer therapeutics. Part three focusses on theranosis and drug delivery systems, whilst the final set of chapters look at biomaterial therapies and cancer cell interaction. This extensive book provides a complete overview of the latest research into the potential of biomaterials for the diagnosis, therapy and prevention of cancer. Biomaterials for cancer therapeutics is an essential text for academics, scientists and researchers within the biomedical industry, and will also be of interest to clinicians with a research interest in cancer therapies and biomaterials. A complete overview of the latest research into the potential of biomaterials for the diagnosis, therapy and prevention of cancer Discusses the fundamentals of biomaterials for cancer therapeutics Discusses synthetic vaccines, proteins and polymers for cancer therapeutics

Cell-derived Matrices Part A

Cell-derived Matrices Part A
Author : Anonim
Publisher : Academic Press
Release Date : 2020-03-26
Category : Science
Total pages :350
GET BOOK

Cell-Derived Matrices, Part A, Volume 156, provides a detailed description and step-by-step methods surrounding the use of three-dimensional cell-derived matrices for tissue engineering applications. Biochemical, biophysical and cell biological approaches are presented, along with sample results. Specific chapters cover Anisotropic cell-derived matrices with controlled 3D architecture, Generation of functional fluorescently-labelled cell-derived matrices by means of genetically-modified fibroblasts, Bi-layered cell-derived matrices, Engineering clinically-relevant cell-derived matrices using primary fibroblasts, Decellularized matrices for bioprinting applications, and much more. Contains contributions from leading experts in the field from across the globe Covers a wide array of topics on the use of cell-derived matrices for tissue engineering and regenerative medicine applications Includes relevant, analysis-based topics, such as quantification of the mechanical properties, decellularization protocols, and innovative matrix engineering methods

Cell-Derived Matrices Part B

Cell-Derived Matrices Part B
Author : Anonim
Publisher : Academic Press
Release Date : 2020-04-23
Category : Science
Total pages :264
GET BOOK

Cell-Derived Matrices Part B, Volume 157 provides a detailed description and step-by-step methods surrounding the use of three-dimensional cell-derived matrices for tissue engineering applications. Chapters in this new release include Glaucomatous cell-derived matrices, Cardiac tissue explants decellularization, Decellularization of skin matrices for wound healing applications, Guiding axonal growth by aligned cell-derived matrices for spinal cord injury regeneration, Human Mesenchymal Stem Cell–Derived Matrices for Enhanced Osteoregeneration, Amniotic decellularized matrices, Three-Dimensional (3-D) Tissue Reconstruction without Scaffold, Tubular cell-derived matrices for TERM applications, and more. Contains contributions from leading experts in the field from across the globe Covers a wide array of topics surrounding the use of cell-derived matrices for tissue engineering and regenerative medicine applications Includes relevant, analysis-based topics, such as the quantification of mechanical properties, decellularization protocols, and innovative matrix engineering methods

Biomaterials- and Microfluidics-Based Tissue Engineered 3D Models

Biomaterials- and Microfluidics-Based Tissue Engineered 3D Models
Author : J. Miguel Oliveira,Rui L. Reis
Publisher : Springer Nature
Release Date : 2020-04-13
Category : Medical
Total pages :175
GET BOOK

This contributed volume reviews the latest advances on relevant 3D tissue engineered in vitro models of disease making use of biomaterials and microfluidics. The main focus of this book is on advanced biomaterials and microfluidics technologies that have been used in in vitro mimetic 3D models of human diseases and show great promise in revolutionizing personalized medicine. Readers will discover important topics involving biomaterials and microfluidics design, advanced processing techniques, and development and validation of organ- and body-on-a-chip models for bone, liver, and cancer research. An in depth discussion of microfabrication methods for microfluidics development is also provided. This work is edited by two truly multidisciplinary scientists and includes important contributions from well-known experts in their fields. The work is written for both early stage and experienced researchers, and well-established scientists enrolled in the fields of biomaterials, microfluidics, and tissue engineering, and is especially suited to those who wish to become acquainted with the principles and latest developments of in vitro models of diseases, such as professionals working in pharma, medicine, and engineering.

Biomaterials for Brain Therapy and Repair

Biomaterials for Brain Therapy and Repair
Author : Sara Pedron,Brendan A.C. Harley
Publisher : Frontiers Media SA
Release Date : 2019-02-06
Category :
Total pages :129
GET BOOK

Prevalence of brain related diseases is expected to increase significantly in the next decades. Therefore, there is a vital need to develop effective, personalized models of human brain that can provide information about brain development, and the unique neurobiology of brain disorders. The use of biomaterials can play a strategic role for the future understanding and treatment of complex CNS diseases. Three-dimensional brain cultures have shown promise in disease modelling, cell transplantation and modulation of tissue repair.

Tumor Organoids

Tumor Organoids
Author : Shay Soker,Aleksander Skardal
Publisher : Humana Press
Release Date : 2017-10-20
Category : Medical
Total pages :213
GET BOOK

Cancer cell biology research in general, and anti-cancer drug development specifically, still relies on standard cell culture techniques that place the cells in an unnatural environment. As a consequence, growing tumor cells in plastic dishes places a selective pressure that substantially alters their original molecular and phenotypic properties.The emerging field of regenerative medicine has developed bioengineered tissue platforms that can better mimic the structure and cellular heterogeneity of in vivo tissue, and are suitable for tumor bioengineering research. Microengineering technologies have resulted in advanced methods for creating and culturing 3-D human tissue. By encapsulating the respective cell type or combining several cell types to form tissues, these model organs can be viable for longer periods of time and are cultured to develop functional properties similar to native tissues. This approach recapitulates the dynamic role of cell–cell, cell–ECM, and mechanical interactions inside the tumor. Further incorporation of cells representative of the tumor stroma, such as endothelial cells (EC) and tumor fibroblasts, can mimic the in vivo tumor microenvironment. Collectively, bioengineered tumors create an important resource for the in vitro study of tumor growth in 3D including tumor biomechanics and the effects of anti-cancer drugs on 3D tumor tissue. These technologies have the potential to overcome current limitations to genetic and histological tumor classification and development of personalized therapies.

Biomaterials for Cancer Therapeutics

Biomaterials for Cancer Therapeutics
Author : Kinam Park
Publisher : Woodhead Publishing Limited
Release Date : 2020-03
Category :
Total pages :810
GET BOOK

Cancer affects people of all ages, and approximately one in three people are estimated to be diagnosed with cancer during their lifetime. Extensive research is being undertaken by many different institutions to explore potential new therapeutics, and biomaterials technology is being developed to target, treat, and prevent cancer. This book discusses the role and potential of biomaterials in treating this prevalent disease. The first part of the book discusses the fundamentals of biomaterials for cancer therapeutics. Part Two discusses synthetic vaccines, proteins, and polymers for cancer therapeutics. Part Three focusses on theranosis and drug delivery systems, while the final set of chapters look at biomaterial therapies and cancer cell interaction. A complete overview of the latest research into the potential of biomaterials for the diagnosis, treatment, and prevention of cancer Discusses how the properties of specific biomaterials make them important in cancer treatment Discusses synthetic vaccines, proteins, and polymers for cancer therapeutics

Cell-derived Matrices

Cell-derived Matrices
Author : Rui L. Reis
Publisher : Academic Press
Release Date : 2020-05
Category :
Total pages :312
GET BOOK

Cell-Derived Matrices Part B, Volume 157 provides a detailed description and step-by-step methods surrounding the use of three-dimensional cell-derived matrices for tissue engineering applications. Chapters in this new release include Glaucomatous cell-derived matrices, Cardiac tissue explants decellularization, Decellularization of skin matrices for wound healing applications, Guiding axonal growth by aligned cell-derived matrices for spinal cord injury regeneration, Human Mesenchymal Stem Cell-Derived Matrices for Enhanced Osteoregeneration, Amniotic decellularized matrices, Three-Dimensional (3-D) Tissue Reconstruction without Scaffold, Tubular cell-derived matrices for TERM applications, and more.

3D Bioprinting in Medicine

3D Bioprinting in Medicine
Author : Murat Guvendiren
Publisher : Springer
Release Date : 2019-08-02
Category : Medical
Total pages :209
GET BOOK

This book provides current and emerging developments in bioprinting with respect to bioprinting technologies, bioinks, applications, and regulatory pathways. Topics covered include 3D bioprinting technologies, materials such as bioinks and bioink design, applications of bioprinting complex tissues, tissue and disease models, vasculature, and musculoskeletal tissue. The final chapter is devoted to clinical applications of bioprinting, including the safety, ethical, and regulatory aspects. This book serves as a go-to reference on bioprinting and is ideal for students, researchers and professionals, including those in academia, government, the medical industry, and healthcare.

Advanced 3D-Printed Systems and Nanosystems for Drug Delivery and Tissue Engineering

Advanced 3D-Printed Systems and Nanosystems for Drug Delivery and Tissue Engineering
Author : Lisa C. du Toit,Pradeep Kumar,Yahya E. Choonara,Viness Pillay
Publisher : Elsevier
Release Date : 2020-03-08
Category : Technology & Engineering
Total pages :316
GET BOOK

Advanced 3D-Printed Systems and Nanosystems for Drug Delivery and Tissue Engineering explores the intricacies of nanostructures and 3D printed systems in terms of their design as drug delivery or tissue engineering devices, their further evaluations and diverse applications. The book highlights the most recent advances in both nanosystems and 3D-printed systems for both drug delivery and tissue engineering applications. It discusses the convergence of biofabrication with nanotechnology, constructing a directional customizable biomaterial arrangement for promoting tissue regeneration, combined with the potential for controlled bioactive delivery. These discussions provide a new viewpoint for both biomaterials scientists and pharmaceutical scientists. Shows how nanotechnology and 3D printing are being used to create systems which are intelligent, biomimetic and customizable to the patient Explores the current generation of nanostructured 3D printed medical devices Assesses the major challenges of using 3D printed nanosystems for the manufacture of new pharmaceuticals