November 28, 2020

Download Ebook Free Carbon Nanotubes And Graphene For Photonic Applications

Carbon Nanotubes and Graphene for Photonic Applications

Carbon Nanotubes and Graphene for Photonic Applications
Author : Shinji Yamashita,Yahachi Saito,Jong Hyun Choi
Publisher : Elsevier
Release Date : 2013-08-31
Category : Technology & Engineering
Total pages :416
GET BOOK

The optical properties of carbon nanotubes and graphene make them potentially suitable for a variety of photonic applications. Carbon nanotubes and graphene for photonic applications explores the properties of these exciting materials and their use across a variety of applications. Part one introduces the fundamental optical properties of carbon nanotubes and graphene before exploring how carbon nanotubes and graphene are synthesised. A further chapter focusses on nonlinearity enhancement and novel preparation approaches for carbon nanotube and graphene photonic devices. Chapters in part two discuss carbon nanotubes and graphene for laser applications and highlight optical gain and lasing in carbon nanotubes, carbon nanotube and graphene-based fiber lasers, carbon-nanotube-based bulk solid-state lasers, electromagnetic nonlinearities in graphene, and carbon nanotube-based nonlinear photonic devices. Finally, part three focusses on carbon-based optoelectronics and includes chapters on carbon nanotube solar cells, a carbon nanotube-based optical platform for biomolecular detection, hybrid carbon nanotube-liquid crystal nanophotonic devices, and quantum light sources based on individual carbon nanotubes. Carbon nanotubes and graphene for photonic applications is a technical resource for materials scientists, electrical engineers working in the photonics and optoelectronics industry and academics and researchers interested in the field. Covers the properties and fabrication of carbon nanotubes and graphene for photonic applications Considers the uses of carbon nanotubes and graphene for laser applications Explores numerous carbon-based light emitters and detectors

Carbon nanotubes and graphene for photonic applications

Carbon nanotubes and graphene for photonic applications
Author : E. Einarsson,S. Maruyama
Publisher : Elsevier Inc. Chapters
Release Date : 2013-08-31
Category : Technology & Engineering
Total pages :416
GET BOOK

This chapter provides an overview of methods used to synthesize single-walled carbon nanotubes (SWNTs) and graphene. Synthesis methods of commercially available SWNTs are reviewed first, followed by common in-house methods. Historically important approaches are discussed but the focus is on tailored synthesis by chemical vapor deposition (CVD). Primary routes for graphene synthesis are described next, in addition to background regarding the discovery of this two-dimensional material. Exfoliation of graphite into single-layer graphene is described, followed by synthesis routes involving reduction of graphene oxide and epitaxial growth from carbides. The chapter ends with an overview of CVD synthesis of graphene on metal substrates.

Carbon nanotubes and graphene for photonic applications

Carbon nanotubes and graphene for photonic applications
Author : Y.-W. Song
Publisher : Elsevier Inc. Chapters
Release Date : 2013-08-31
Category : Technology & Engineering
Total pages :416
GET BOOK

With their nano-scaled dimensions and extremely elevated optical nonlinearity, carbon nanostructures including single-walled carbon nanotubes and graphene have played a critical role in generating ultrafast optical pulses. The pulsation relies on passive mode-locking of the nanostructures, and has been enhanced by employing an evanescent field interaction scheme that guarantees the all-fiber high-power operation. Preparation schemes for pulsating devices have been evolving via the development of elegant processes such as optical deposition, electrospray, and aerosol deposition of carbon nanostructures, ensuring the dramatic increase of process efficiency. In this chapter, details of the technical achievements are addressed.

Carbon nanotubes and graphene for photonic applications

Carbon nanotubes and graphene for photonic applications
Author : K. Matsuda
Publisher : Elsevier Inc. Chapters
Release Date : 2013-08-31
Category : Technology & Engineering
Total pages :416
GET BOOK

The fundamental electronic states and optical properties of single-walled carbon nanotubes are briefly explained in this chapter. Moreover, the novel optical properties of carbon nanotubes revealed by advanced laser spectroscopy (single-nanotube spectroscopy and time-resolved spectroscopy) are introduced. Due to the enhanced Coulomb interaction, the optically generated electron-hole pair forms a strongly bound ‘exciton’ state, analogous to the hydrogen-like state in the carbon nanotubes. The striking features of excitons in the carbon nanotube, such as singlet-dark states and triplet states, which dominate the optical properties, are described in this chapter.

Carbon nanotubes and graphene for photonic applications

Carbon nanotubes and graphene for photonic applications
Author : K.K. Chow
Publisher : Elsevier Inc. Chapters
Release Date : 2013-08-31
Category : Technology & Engineering
Total pages :416
GET BOOK

Because of their estimated ultra-high third-order nonlinearity, single-walled carbon nanotubes (CNTs) can be regarded as a potential new material for optical nonlinearity. The nonlinearity of CNTs is believed to originate from the inter-band transitions of the π-electrons, causing nonlinear polarization. In this respect, CNTs are similar to other organic optical materials that exhibit extremely high nonlinearity. CNT-based photonics devices offer several key advantages, including ultrafast response, robustness, tunability of wavelength, and compatibility to fibers. This chapter will describe the design and fabrication of CNT-based nonlinear photonic devices. CNTs with suitable diameters – and thus suitable operational wavelengths – are deposited or grown directly on different types of fibers or waveguides to ensure effective CNT–light interaction. Optical nonlinear effects including four-wave mixing (FWM), cross-phase modulation (XPM), and self-phase modulation (SPM) have been observed experimentally using fabricated CNT-based devices. Corresponding wavelength conversion and optical signal regeneration applications based on various nonlinear effects are discussed.

Graphene

Graphene
Author : Wonbong Choi,Jo-won Lee
Publisher : CRC Press
Release Date : 2016-04-19
Category : Science
Total pages :394
GET BOOK

Since the late 20th century, graphene—a one-atom-thick planar sheet of sp2-bonded carbon atoms densely packed in a honeycomb crystal lattice—has garnered appreciable attention as a potential next-generation electronic material due to its exceptional properties. These properties include high current density, ballistic transport, chemical inertness, high thermal conductivity, optical transmittance, and super hydrophobicity at nanometer scale. In contrast to research on its excellent electronic and optoelectronic properties, research on the syntheses of a single sheet of graphene for industrial applications is in its nascent stages. Graphene: Synthesis and Applications reviews the advancement and future directions of graphene research in the areas of synthesis and properties, and explores applications, such as electronics, heat dissipation, field emission, sensors, composites, and energy.

Molecular- and Nano-Tubes

Molecular- and Nano-Tubes
Author : Oliver Hayden,Kornelius Nielsch
Publisher : Springer Science & Business Media
Release Date : 2011-08-04
Category : Technology & Engineering
Total pages :473
GET BOOK

Molecular- and Nano-Tubes summarizes recent advancements in the synthesis, fabrication and applications of tubular structures. An interdisciplinary overview of innovative science focused on tubular structures is provided. The reader is offered an overview of the different fields that molecular and nano tubes appear in, in order to learn the fundamental basics as well as the applications of these materials. This book also: Shows how nanotechnology creates novel materials by crossing the barriers between biology and material science, electronics and optics, medicine and more Demonstrates that tubes are a fundamental element in nature and used in disparate applications such as ion channels and carbon nanotubes Molecular- and Nano-Tubes is an ideal volume for researchers and engineers working in materials science and nanotechnology.

Carbon-Based Nanoelectromagnetics

Carbon-Based Nanoelectromagnetics
Author : Antonio Maffucci,Sergey Maksimenko,Yuri Svirko
Publisher : Elsevier
Release Date : 2019-06-08
Category : Science
Total pages :270
GET BOOK

Carbon-Based Nanoelectromagnetics provides detailed insights into the electromagnetic interactions of carbon-based nanostructured materials such as graphene and carbon nanotubes. Chapters within the book offer a comprehensive overview on this discipline, starting with an introduction to the field-matter interaction, its features, and finally, its applications in microwave, THz and optical frequency ranges. Electromagnetics at the nanoscale level has become a major research area in recent years as the synthesis of a variety of carbon-based nanostructures has progressed dramatically, thus opening the era of nanoelectronics and nanophotonics. To meet the challenges of these new fields, a thorough knowledge is required of the peculiar properties of the electromagnetic field. The novel behavior of the electromagnetic fields interacting with nano-sized elements and nano-structured has motivated the birth of this new research discipline, ‘Nanoelectromagnetics’. Presents a one-stop resource that explores the emerging field of nanoelectromagnetics Focuses on modeling, simulation, analysis, design and characterization, with an emphasis on applications of nanoelectromagnetics Explores the optical properties and applications of a range of carbon-based nanomaterials

2D and Quasi-2D Composite and Nanocomposite Materials

2D and Quasi-2D Composite and Nanocomposite Materials
Author : Ross Mcphedran,Simon Gluzman,Vladimir Mityushev,Natalia Rylko
Publisher : Elsevier
Release Date : 2020-06-05
Category : Technology & Engineering
Total pages :316
GET BOOK

2D and Quasi-2D Composite and Nanocomposite Materials: Theory, Properties and Photonic Applications covers the theory, characterization and computational modeling of 2D composite materials and shows how they are used for the creation of materials for 3D structures The book covers three major themes: Properties of 2D and quasi-2D composites are discussed in the context of homogenization theory. Homogenization results are discussed for spatiotemporal material composites assembled from materials which are distributed on a micro-scale in space and in time. New types of transport phenomena and localization in random media are addressed, with particular attention to the non-reciprocity of transport coefficients. Plasmonics and magneto-optics are also of particular interest. Magneto-transport and sub-wavelength resolution in electromagnetic and acoustic imaging are further considered. This book is an important resource for materials scientists and engineers working on nanomaterials, photonic composites, and materials theory, modeling and simulations. Outlines major modelling techniques of 2D nanocomposites for photonic applications Explores how the properties of 2D nanocomposites make them suitable for use for building 3D structures Assesses the challenges of using 2D nanocomposites for designing new devices on a mass scale

Handbook of Spectroscopy

Handbook of Spectroscopy
Author : G¿nter Gauglitz,David S. Moore
Publisher : John Wiley & Sons
Release Date : 2014-05-05
Category : Science
Total pages :1993
GET BOOK

This second, thoroughly revised, updated and enlarged edition provides a straightforward introduction to spectroscopy, showing what it can do and how it does it, together with a clear, integrated and objective account of the wealth of information that may be derived from spectra. It also features new chapters on spectroscopy in nano-dimensions, nano-optics, and polymer analysis. Clearly structured into sixteen sections, it covers everything from spectroscopy in nanodimensions to medicinal applications, spanning a wide range of the electromagnetic spectrum and the physical processes involved, from nuclear phenomena to molecular rotation processes. In addition, data tables provide a comparison of different methods in a standardized form, allowing readers to save valuable time in the decision process by avoiding wrong turns, and also help in selecting the instrumentation and performing the experiments. These four volumes are a must-have companion for daily use in every lab.

Nanoalloys

Nanoalloys
Author : Florent Calvo
Publisher : Newnes
Release Date : 2013-03-12
Category : Technology & Engineering
Total pages :432
GET BOOK

Nanoalloys: From Fundamentals to Emergent Applications presents and discusses the major topics related to nanoalloys at a time when the literature on the subject remains scarce. Particular attention is paid to experimental and theoretical aspects under the form of broad reviews covering the most recent developments. The book is organized into 11 chapters covering the most fundamental aspects of nanoalloys related to their synthesis and characterization, as well as their theoretical study. Aspects related to their thermodynamics and kinetics are covered as well. The coverage then moves to more specific topics, including optics, magnetism and catalysis, and finally to biomedical applications and the technologically relevant issue of self-assembly. With no current single reference source on the subject, the work is invaluable for researchers as the nanoscience field moves swiftly to full monetization. Encapsulates physical science of structure, properties, size, composition and ordering at nanoscale, aiding synthesis of experimentation and modelling Multi-expert and interdisciplinary perspectives on growth, synthesis and characterization of bimetallic clusters and particulates supports expansion of your current research activity into applications Synthesizes concepts and draws links between fundamental metallurgy and cutting edge nanoscience, aiding interdisciplinary research activity

Nano Optoelectronic Sensors and Devices

Nano Optoelectronic Sensors and Devices
Author : Ning Xi,King Lai
Publisher : William Andrew
Release Date : 2011-10-14
Category : Technology & Engineering
Total pages :224
GET BOOK

Nanophotonics has emerged as a major technology and applications domain, exploiting the interaction of light-emitting and light-sensing nanostructured materials. These devices are lightweight, highly efficient, low on power consumption, and are cost effective to produce. The authors of this book have been involved in pioneering work in manufacturing photonic devices from carbon nanotube (CNT) nanowires and provide a series of practical guidelines for their design and manufacture, using processes such as nano-robotic manipulation and assembly methods. They also introduce the design and operational principles of opto-electrical sensing devices at the nano scale. Thermal annealing and packaging processes are also covered, as key elements in a scalable manufacturing process. Examples of applications of different nanowire based photonic devices are presented. These include applications in the fields of electronics (e.g. FET, CNT Schotty diode) and solar energy. Discusses opto-electronic nanomaterials, characterization and properties from an engineering perspective, enabling the commercialization of key emerging technologies Provides scalable techniques for nanowire structure growth, manipulation and assembly (i.e. synthesis) Explores key application areas such as sensing, electronics and solar energy

Biosensors Based on Nanomaterials and Nanodevices

Biosensors Based on Nanomaterials and Nanodevices
Author : Jun Li,Nianqiang Wu
Publisher : CRC Press
Release Date : 2013-12-20
Category : Medical
Total pages :517
GET BOOK

Biosensors Based on Nanomaterials and Nanodevices links interdisciplinary research from leading experts to provide graduate students, academics, researchers, and industry professionals alike with a comprehensive source for key advancements and future trends in nanostructured biosensor development. It describes the concepts, principles, materials, device fabrications, functions, system integrations, and applications of various types of biosensors based on signal transduction mechanisms, including fluorescence, photonic crystal, surface-enhanced Raman scattering, electrochemistry, electro-luminescence, field-effect transistor, and magnetic effect. The book: Explains how to utilize the unique properties of nanomaterials to construct nanostructured biosensors to achieve enhanced performance Features examples of biosensors based on both typical and emerging nanomaterials, such as gold nanoparticles, quantum dots, graphene, graphene oxides, magnetic nanoparticles, carbon nanotubes, inorganic nanowires/nanorods, plasmonic nanostructures, and photonic crystals Demonstrates the broad applications of nanostructured biosensors in environmental monitoring, food safety, industrial quality assurance, and in vitro and in vivo health diagnosis Inspires new ideas for tackling multiscale and multidisciplinary issues in developing high-performance biosensors for complex practical biomedical problems Focusing on the connection between nanomaterials research and biosensor development, Biosensors Based on Nanomaterials and Nanodevices illustrates the exciting possibilities and critical challenges of biosensors based on nanomaterials and nanodevices for future health monitoring, disease diagnosis, therapeutic treatments, and beyond.

Carbon Nanotube Science

Carbon Nanotube Science
Author : Peter John Frederich Harris
Publisher : Cambridge University Press
Release Date : 2009-03-19
Category : Science
Total pages :301
GET BOOK

Provides coverage of all of the important aspects of carbon nanotube research, including synthesis, properties and potential applications.

Fundamental and Applied Nano-Electromagnetics II

Fundamental and Applied Nano-Electromagnetics II
Author : Antonio Maffucci,Sergey A. Maksimenko
Publisher : Springer
Release Date : 2019-06-14
Category : Science
Total pages :214
GET BOOK

The increasing prevalence of nanotechnologies has led to the birth of “nanoelectromagnetics,” a novel applied science related to the interaction of electromagnetic radiation with quantum mechanical low-dimensional systems. This book provides an overview of the latest advances in nanoelectromagnetics, and presents contributions from an interdisciplinary community of scientists and technologists involved in this research topic. The aspects covered here range from the synthesis of nanostructures and nanocomposites to their characterization, and from the design of devices and systems to their fabrication. The book also focuses on the novel frontier of terahertz technology, which has been expanded by the impressive strides made in nanotechnology, and presents a comprehensive overview of the: - synthesis of various nanostructured materials; - study of their electrical and optical properties; - use of nano-sized elements and nanostructures as building blocks for devices; - design and fabrication of nanotechnology devices operating in the THz, IR and optical range. The book introduces the reader to materials like nanocomposites, graphene nanoplatelets, carbon nanotubes, metal nanotubes, and silicon nanostructures; to devices like photonic crystals, microcavities, antennas, and interconnects; and to applications like sensing and imaging, with a special emphasis on the THz frequency range.