June 15, 2021

Download Ebook Free Cogeneration And Polygeneration Systems

Cogeneration and Polygeneration Systems

Cogeneration and Polygeneration Systems
Author : Majid Amidpour,Mohammad Hasan Khoshgoftar Manesh
Publisher : Academic Press
Release Date : 2020-11-23
Category : Technology & Engineering
Total pages :416
GET BOOK

Cogeneration and Polygeneration Systems explores the suite of state-of-the-art modeling, design, analysis and optimization procedures for creating and retooling optimally efficient combined heat and power (CHP) and polygeneration energy systems. The book adopts exergetic and thermoeconomic analysis and related modeling and simulation tools to inform performance and systems design in modern cogeneration plants. Chapters provide a methodical approach to the design, operation and troubleshooting of cogeneration systems when they are integrated with industrial processes. Cogeneration targets, environmental impacts, total site integration, and availability and reliability issues are addressed in-depth. Explores exergetic and exergoeconomic analysis for optimization purposes of CHP systems Addresses availability and reliability issues within cogeneration systems Reviews modern polygeneration systems based on renewable energy resources and fuel cells

Cogeneration and Polygeneration Systems

Cogeneration and Polygeneration Systems
Author : Majid Amidpour,Mohammad Hasan Khoshgoftar Manesh
Publisher : Academic Press
Release Date : 2020-11-03
Category : Technology & Engineering
Total pages :406
GET BOOK

Cogeneration and Polygeneration Systems explores the suite of state-of-the-art modeling, design, analysis and optimization procedures for creating and retooling optimally efficient combined heat and power (CHP) and polygeneration energy systems. The book adopts exergetic and thermoeconomic analysis and related modeling and simulation tools to inform performance and systems design in modern cogeneration plants. Chapters provide a methodical approach to the design, operation and troubleshooting of cogeneration systems when they are integrated with industrial processes. Cogeneration targets, environmental impacts, total site integration, and availability and reliability issues are addressed in-depth. Explores exergetic and exergoeconomic analysis for optimization purposes of CHP systems Addresses availability and reliability issues within cogeneration systems Reviews modern polygeneration systems based on renewable energy resources and fuel cells

Smart Energy Strategies

Smart Energy Strategies
Author : Anonim
Publisher : vdf Hochschulverlag AG
Release Date : 2008
Category :
Total pages :149
GET BOOK

The enormous challenge of creating a longterm sustainable energy system calls for the participation of engineers, natural and social scientists. They can contribute both through their research and by helping to craft strategies that steer the future development of the system. A sustainable energy system cannot be developed by technical fixes alone; action is required on a broad front, including institutional and regulatory changes. There is an abundance of scientific evidence on which to base decisions on how to proceed. Still, research has a crucial role to play as well.Smart Energy Strategies highlights smart solutions: advances in technical and social-science energy research, particularly advances related to new information technology (e.g. control and communication); and experience with targeted applications of information technology in the supply and consumption of energy. The conference has focused on smart strategies taking into account current technical and institutional systems, with their inertia and shortcomings; future energy-related challenges: energy security; the growing energy needs of the disadvantaged; and unintended consequences of energy systems, particularly climate change but also uncontrolled money flows; smart technical, institutional, and regulatory mechanisms for meeting these challenges.

Integrated Gasifier Combined Cycle Polygeneration System to Produce Liquid Hydrogen

Integrated Gasifier Combined Cycle Polygeneration System to Produce Liquid Hydrogen
Author : Anonim
Publisher : Unknown
Release Date : 1982
Category :
Total pages :37
GET BOOK

Proceedings of the 24th Intersociety Energy Conversion Engineering Conference: Energy management and renewable resource systems

Proceedings of the 24th Intersociety Energy Conversion Engineering Conference: Energy management and renewable resource systems
Author : Anonim
Publisher : Unknown
Release Date : 1989
Category : Power (Mechanics)
Total pages :3112
GET BOOK

A Polygeneration Process Concept for Hybrid Solar and Biomass Power Plant

A Polygeneration Process Concept for Hybrid Solar and Biomass Power Plant
Author : Umakanta Sahoo
Publisher : John Wiley & Sons
Release Date : 2018-08-03
Category : Technology & Engineering
Total pages :294
GET BOOK

The global warming phenomenon as a significant sustainability issue is gaining worldwide support for development of renewable energy technologies. The term “polygeneration” is referred to as “an energy supply system, which delivers more than one form of energy to the final user.” For example, electricity, cooling and desalination can be delivered from a polygeneration process. The polygeneration process in a hybrid solar thermal power plant can deliver electricity with less impact on the environment compared to a conventional fossil fuel-based power generating system. It is also THE next generation energy production technique with the potential to overcome the undesirable intermittence of renewable energy systems. In this study, the polygeneration process simultaneous production of power, vapor absorption refrigeration (VAR) cooling and multi-effect humidification and dehumidification (MEHD) desalination system from different heat sources in hybrid solar-biomass (HSB) system with higher energy efficiencies (energy and exergy), primary energy savings (PES) and payback period are investigated, focusing on several aspects associated with hybrid solar-biomass power generation installations, such as wide availability of biomass resources and solar direct normal irradiance (DNI), and other technologies. Thermodynamic evaluation (energy and exergy) of HSB power has also been investigated, along with the VAR cooling system, the modelling, simulation, optimization and cost analysis of the polygeneration hybrid solar biomass system, all accompanied by multiple case studies and examples for practical applications. This volume provides the researcher, student and engineer with the intellectual tool needed for understanding new ideas in this rapidly emerging field. The book is also intended to serve as a general source and reference book for the professional (consultant, designer, contractor etc.) who is working in the field of solar thermal, biomass, power plant, polygeneration, cooling and process heat. It is a must-have for anyone working in this field.

ENERGY POLICY VOLUME 31

ENERGY POLICY VOLUME 31
Author : Anonim
Publisher : Unknown
Release Date : 2021
Category :
Total pages :129
GET BOOK

Exergy

Exergy
Author : Silvio de Oliveira Junior
Publisher : Springer Science & Business Media
Release Date : 2012-11-02
Category : Technology & Engineering
Total pages :338
GET BOOK

Bridging the gap between concepts derived from Second Law of Thermodynamics and their application to Engineering practice, the property exergy and the exergy balance can be a tool for analyzing and improving the performance of energy conversion processes. With the exergy analysis it is possible to evaluate the performance of energy conversion processes not only on a thermodynamics basis but also by including production costs and environmental aspects and impacts of the studied processes. This comprehensive approach of the use of energy has, as one of the most important feature, the identification of sustainable ways of energy resources utilization. Based on the fundamentals of the exergy concept, its calculation, graphical representations and exergy balances evaluation, Exergy: Production Cost And Renewability describes the application of detailed exergy and thermoeconomic analysis to power plants and polygeneration systems, petroleum production and refining plants (including hydrogen production), chemical plants, biofuel production routes, combined production of ethanol and electricity, aircraft systems design, environmental impact mitigation processes and human body behavior. The presented case studies aim at providing students, researchers and engineers with guidelines to the utilization of the exergy and thermoeconomic analysis to model, simulate and optimize real processes and industrial plants.

Handbook of Clean Energy Systems, 6 Volume Set

Handbook of Clean Energy Systems, 6 Volume Set
Author : Jinyue Yan
Publisher : John Wiley & Sons
Release Date : 2015-06-22
Category : Science
Total pages :4032
GET BOOK

The Handbook of Clean Energy Systems brings together an international team of experts to present a comprehensive overview of the latest research, developments and practical applications throughout all areas of clean energy systems. Consolidating information which is currently scattered across a wide variety of literature sources, the handbook covers a broad range of topics in this interdisciplinary research field including both fossil and renewable energy systems. The development of intelligent energy systems for efficient energy processes and mitigation technologies for the reduction of environmental pollutants is explored in depth, and environmental, social and economic impacts are also addressed. Topics covered include: Volume 1 - Renewable Energy: Biomass resources and biofuel production; Bioenergy Utilization; Solar Energy; Wind Energy; Geothermal Energy; Tidal Energy. Volume 2 - Clean Energy Conversion Technologies: Steam/Vapor Power Generation; Gas Turbines Power Generation; Reciprocating Engines; Fuel Cells; Cogeneration and Polygeneration. Volume 3 - Mitigation Technologies: Carbon Capture; Negative Emissions System; Carbon Transportation; Carbon Storage; Emission Mitigation Technologies; Efficiency Improvements and Waste Management; Waste to Energy. Volume 4 - Intelligent Energy Systems: Future Electricity Markets; Diagnostic and Control of Energy Systems; New Electric Transmission Systems; Smart Grid and Modern Electrical Systems; Energy Efficiency of Municipal Energy Systems; Energy Efficiency of Industrial Energy Systems; Consumer Behaviors; Load Control and Management; Electric Car and Hybrid Car; Energy Efficiency Improvement. Volume 5 - Energy Storage: Thermal Energy Storage; Chemical Storage; Mechanical Storage; Electrochemical Storage; Integrated Storage Systems. Volume 6 - Sustainability of Energy Systems: Sustainability Indicators, Evaluation Criteria, and Reporting; Regulation and Policy; Finance and Investment; Emission Trading; Modeling and Analysis of Energy Systems; Energy vs. Development; Low Carbon Economy; Energy Efficiencies and Emission Reduction. Key features: Comprising over 3,500 pages in 6 volumes, HCES presents a comprehensive overview of the latest research, developments and practical applications throughout all areas of clean energy systems, consolidating a wealth of information which is currently scattered across a wide variety of literature sources. In addition to renewable energy systems, HCES also covers processes for the efficient and clean conversion of traditional fuels such as coal, oil and gas, energy storage systems, mitigation technologies for the reduction of environmental pollutants, and the development of intelligent energy systems. Environmental, social and economic impacts of energy systems are also addressed in depth. Published in full colour throughout. Fully indexed with cross referencing within and between all six volumes. Edited by leading researchers from academia and industry who are internationally renowned and active in their respective fields. Published in print and online. The online version is a single publication (i.e. no updates), available for one-time purchase or through annual subscription.

World Energy Assessment

World Energy Assessment
Author : United Nations Development Programme
Publisher : United Nations Publications
Release Date : 2000
Category : Technology & Engineering
Total pages :508
GET BOOK

The report discusses the linkages between energy and economic, social, environmental, and security issues, and analyses the contradictions between current patterns of use and objectives in these areas. The WEA also reviews energy resources and technology options from the point of view of sustainability including better end-use efficiency, greater reliance on renewable sources of energy, and next-generation nuclear and fossil-fuel technologies. Further, the report examines plausible scenarios for combining various options to achieve a sustainable and relatively prosperous future. The report concludes by examining policy options for producing and using energy in ways that are compatible with sustainable development.

Handbook of Clean Energy Systems, 6 Volume Set

Handbook of Clean Energy Systems, 6 Volume Set
Author : Jinyue Yan
Publisher : Wiley
Release Date : 2015-06-22
Category : Science
Total pages :4032
GET BOOK

The Handbook of Clean Energy Systems brings together an international team of experts to present a comprehensive overview of the latest research, developments and practical applications throughout all areas of clean energy systems. Consolidating information which is currently scattered across a wide variety of literature sources, the handbook covers a broad range of topics in this interdisciplinary research field including both fossil and renewable energy systems. The development of intelligent energy systems for efficient energy processes and mitigation technologies for the reduction of environmental pollutants is explored in depth, and environmental, social and economic impacts are also addressed. Topics covered include: Volume 1 - Renewable Energy: Biomass resources and biofuel production; Bioenergy Utilization; Solar Energy; Wind Energy; Geothermal Energy; Tidal Energy. Volume 2 - Clean Energy Conversion Technologies: Steam/Vapor Power Generation; Gas Turbines Power Generation; Reciprocating Engines; Fuel Cells; Cogeneration and Polygeneration. Volume 3 - Mitigation Technologies: Carbon Capture; Negative Emissions System; Carbon Transportation; Carbon Storage; Emission Mitigation Technologies; Efficiency Improvements and Waste Management; Waste to Energy. Volume 4 - Intelligent Energy Systems: Future Electricity Markets; Diagnostic and Control of Energy Systems; New Electric Transmission Systems; Smart Grid and Modern Electrical Systems; Energy Efficiency of Municipal Energy Systems; Energy Efficiency of Industrial Energy Systems; Consumer Behaviors; Load Control and Management; Electric Car and Hybrid Car; Energy Efficiency Improvement. Volume 5 - Energy Storage: Thermal Energy Storage; Chemical Storage; Mechanical Storage; Electrochemical Storage; Integrated Storage Systems. Volume 6 - Sustainability of Energy Systems: Sustainability Indicators, Evaluation Criteria, and Reporting; Regulation and Policy; Finance and Investment; Emission Trading; Modeling and Analysis of Energy Systems; Energy vs. Development; Low Carbon Economy; Energy Efficiencies and Emission Reduction. Key features: Comprising over 3,500 pages in 6 volumes, HCES presents a comprehensive overview of the latest research, developments and practical applications throughout all areas of clean energy systems, consolidating a wealth of information which is currently scattered across a wide variety of literature sources. In addition to renewable energy systems, HCES also covers processes for the efficient and clean conversion of traditional fuels such as coal, oil and gas, energy storage systems, mitigation technologies for the reduction of environmental pollutants, and the development of intelligent energy systems. Environmental, social and economic impacts of energy systems are also addressed in depth. Published in full colour throughout. Fully indexed with cross referencing within and between all six volumes. Edited by leading researchers from academia and industry who are internationally renowned and active in their respective fields. Published in print and online. The online version is a single publication (i.e. no updates), available for one-time purchase or through annual subscription.

Handbook of Clean Energy Systems, 6 Volume Set

Handbook of Clean Energy Systems, 6 Volume Set
Author : Jinyue Yan
Publisher : Wiley
Release Date : 2015-06-22
Category : Science
Total pages :4032
GET BOOK

The Handbook of Clean Energy Systems brings together an international team of experts to present a comprehensive overview of the latest research, developments and practical applications throughout all areas of clean energy systems. Consolidating information which is currently scattered across a wide variety of literature sources, the handbook covers a broad range of topics in this interdisciplinary research field including both fossil and renewable energy systems. The development of intelligent energy systems for efficient energy processes and mitigation technologies for the reduction of environmental pollutants is explored in depth, and environmental, social and economic impacts are also addressed. Topics covered include: Volume 1 - Renewable Energy: Biomass resources and biofuel production; Bioenergy Utilization; Solar Energy; Wind Energy; Geothermal Energy; Tidal Energy. Volume 2 - Clean Energy Conversion Technologies: Steam/Vapor Power Generation; Gas Turbines Power Generation; Reciprocating Engines; Fuel Cells; Cogeneration and Polygeneration. Volume 3 - Mitigation Technologies: Carbon Capture; Negative Emissions System; Carbon Transportation; Carbon Storage; Emission Mitigation Technologies; Efficiency Improvements and Waste Management; Waste to Energy. Volume 4 - Intelligent Energy Systems: Future Electricity Markets; Diagnostic and Control of Energy Systems; New Electric Transmission Systems; Smart Grid and Modern Electrical Systems; Energy Efficiency of Municipal Energy Systems; Energy Efficiency of Industrial Energy Systems; Consumer Behaviors; Load Control and Management; Electric Car and Hybrid Car; Energy Efficiency Improvement. Volume 5 - Energy Storage: Thermal Energy Storage; Chemical Storage; Mechanical Storage; Electrochemical Storage; Integrated Storage Systems. Volume 6 - Sustainability of Energy Systems: Sustainability Indicators, Evaluation Criteria, and Reporting; Regulation and Policy; Finance and Investment; Emission Trading; Modeling and Analysis of Energy Systems; Energy vs. Development; Low Carbon Economy; Energy Efficiencies and Emission Reduction. Key features: Comprising over 3,500 pages in 6 volumes, HCES presents a comprehensive overview of the latest research, developments and practical applications throughout all areas of clean energy systems, consolidating a wealth of information which is currently scattered across a wide variety of literature sources. In addition to renewable energy systems, HCES also covers processes for the efficient and clean conversion of traditional fuels such as coal, oil and gas, energy storage systems, mitigation technologies for the reduction of environmental pollutants, and the development of intelligent energy systems. Environmental, social and economic impacts of energy systems are also addressed in depth. Published in full colour throughout. Fully indexed with cross referencing within and between all six volumes. Edited by leading researchers from academia and industry who are internationally renowned and active in their respective fields. Published in print and online. The online version is a single publication (i.e. no updates), available for one-time purchase or through annual subscription.

Handbook of Clean Energy Systems, 6 Volume Set

Handbook of Clean Energy Systems, 6 Volume Set
Author : Jinyue Yan
Publisher : Wiley
Release Date : 2015-06-22
Category : Science
Total pages :4032
GET BOOK

The Handbook of Clean Energy Systems brings together an international team of experts to present a comprehensive overview of the latest research, developments and practical applications throughout all areas of clean energy systems. Consolidating information which is currently scattered across a wide variety of literature sources, the handbook covers a broad range of topics in this interdisciplinary research field including both fossil and renewable energy systems. The development of intelligent energy systems for efficient energy processes and mitigation technologies for the reduction of environmental pollutants is explored in depth, and environmental, social and economic impacts are also addressed. Topics covered include: Volume 1 - Renewable Energy: Biomass resources and biofuel production; Bioenergy Utilization; Solar Energy; Wind Energy; Geothermal Energy; Tidal Energy. Volume 2 - Clean Energy Conversion Technologies: Steam/Vapor Power Generation; Gas Turbines Power Generation; Reciprocating Engines; Fuel Cells; Cogeneration and Polygeneration. Volume 3 - Mitigation Technologies: Carbon Capture; Negative Emissions System; Carbon Transportation; Carbon Storage; Emission Mitigation Technologies; Efficiency Improvements and Waste Management; Waste to Energy. Volume 4 - Intelligent Energy Systems: Future Electricity Markets; Diagnostic and Control of Energy Systems; New Electric Transmission Systems; Smart Grid and Modern Electrical Systems; Energy Efficiency of Municipal Energy Systems; Energy Efficiency of Industrial Energy Systems; Consumer Behaviors; Load Control and Management; Electric Car and Hybrid Car; Energy Efficiency Improvement. Volume 5 - Energy Storage: Thermal Energy Storage; Chemical Storage; Mechanical Storage; Electrochemical Storage; Integrated Storage Systems. Volume 6 - Sustainability of Energy Systems: Sustainability Indicators, Evaluation Criteria, and Reporting; Regulation and Policy; Finance and Investment; Emission Trading; Modeling and Analysis of Energy Systems; Energy vs. Development; Low Carbon Economy; Energy Efficiencies and Emission Reduction. Key features: Comprising over 3,500 pages in 6 volumes, HCES presents a comprehensive overview of the latest research, developments and practical applications throughout all areas of clean energy systems, consolidating a wealth of information which is currently scattered across a wide variety of literature sources. In addition to renewable energy systems, HCES also covers processes for the efficient and clean conversion of traditional fuels such as coal, oil and gas, energy storage systems, mitigation technologies for the reduction of environmental pollutants, and the development of intelligent energy systems. Environmental, social and economic impacts of energy systems are also addressed in depth. Published in full colour throughout. Fully indexed with cross referencing within and between all six volumes. Edited by leading researchers from academia and industry who are internationally renowned and active in their respective fields. Published in print and online. The online version is a single publication (i.e. no updates), available for one-time purchase or through annual subscription.

Handbook of Clean Energy Systems, 6 Volume Set

Handbook of Clean Energy Systems, 6 Volume Set
Author : Jinyue Yan
Publisher : Wiley
Release Date : 2015-06-22
Category : Science
Total pages :4032
GET BOOK

The Handbook of Clean Energy Systems brings together an international team of experts to present a comprehensive overview of the latest research, developments and practical applications throughout all areas of clean energy systems. Consolidating information which is currently scattered across a wide variety of literature sources, the handbook covers a broad range of topics in this interdisciplinary research field including both fossil and renewable energy systems. The development of intelligent energy systems for efficient energy processes and mitigation technologies for the reduction of environmental pollutants is explored in depth, and environmental, social and economic impacts are also addressed. Topics covered include: Volume 1 - Renewable Energy: Biomass resources and biofuel production; Bioenergy Utilization; Solar Energy; Wind Energy; Geothermal Energy; Tidal Energy. Volume 2 - Clean Energy Conversion Technologies: Steam/Vapor Power Generation; Gas Turbines Power Generation; Reciprocating Engines; Fuel Cells; Cogeneration and Polygeneration. Volume 3 - Mitigation Technologies: Carbon Capture; Negative Emissions System; Carbon Transportation; Carbon Storage; Emission Mitigation Technologies; Efficiency Improvements and Waste Management; Waste to Energy. Volume 4 - Intelligent Energy Systems: Future Electricity Markets; Diagnostic and Control of Energy Systems; New Electric Transmission Systems; Smart Grid and Modern Electrical Systems; Energy Efficiency of Municipal Energy Systems; Energy Efficiency of Industrial Energy Systems; Consumer Behaviors; Load Control and Management; Electric Car and Hybrid Car; Energy Efficiency Improvement. Volume 5 - Energy Storage: Thermal Energy Storage; Chemical Storage; Mechanical Storage; Electrochemical Storage; Integrated Storage Systems. Volume 6 - Sustainability of Energy Systems: Sustainability Indicators, Evaluation Criteria, and Reporting; Regulation and Policy; Finance and Investment; Emission Trading; Modeling and Analysis of Energy Systems; Energy vs. Development; Low Carbon Economy; Energy Efficiencies and Emission Reduction. Key features: Comprising over 3,500 pages in 6 volumes, HCES presents a comprehensive overview of the latest research, developments and practical applications throughout all areas of clean energy systems, consolidating a wealth of information which is currently scattered across a wide variety of literature sources. In addition to renewable energy systems, HCES also covers processes for the efficient and clean conversion of traditional fuels such as coal, oil and gas, energy storage systems, mitigation technologies for the reduction of environmental pollutants, and the development of intelligent energy systems. Environmental, social and economic impacts of energy systems are also addressed in depth. Published in full colour throughout. Fully indexed with cross referencing within and between all six volumes. Edited by leading researchers from academia and industry who are internationally renowned and active in their respective fields. Published in print and online. The online version is a single publication (i.e. no updates), available for one-time purchase or through annual subscription.

Cleaner Coal in China

Cleaner Coal in China
Author : International Energy Agency,Organisation for Economic Co-operation and Development
Publisher : OCDE
Release Date : 2009
Category : Business & Economics
Total pages :320
GET BOOK

China's coal, mined locally and available at a relatively low cost, has brought enormous benefits to energy consumers in China and to those outside the country who enjoy the products of its coal-based economy. Yet from another perspective, China's coal use has a high cost. Despite progress, health and safety in the thousands of small coal mines lag far behind the standards achieved in China's modern, large mines. Environmental degradation is a real and pressing problem at all stages of coal production, supply and use. Adding to these burdens, emissions of carbon dioxide are of concern to the Chinese government as it embarks on its own climate protection strategy. Technology solutions are already transforming the way coal is used in China and elsewhere. This study explores the context in which the development and deployment of these technologies can be accelerated. Providing a large amount of new data, it describes in detail the situation in China as well as the experiences of other countries in making coal cleaner. Above all, the report calls for much greater levels of collaboration - existing bi-lateral and multi-lateral co-operation with China on coal is found lacking. China's growing openness presents many commercial opportunities. Establishing a global market for cleaner coal technologies is key to unlocking the potential of technology - one of ten major recommendations made in this study.