November 28, 2020

Download Ebook Free Cyclic Plasticity Of Metals

Cyclic Plasticity of Engineering Materials

Cyclic Plasticity of Engineering Materials
Author : Guozheng Kang,Qianhua Kan
Publisher : John Wiley & Sons
Release Date : 2017-03-10
Category : Technology & Engineering
Total pages :552
GET BOOK

New contributions to the cyclic plasticity of engineering materials Written by leading experts in the field, this book provides an authoritative and comprehensive introduction to cyclic plasticity of metals, polymers, composites and shape memory alloys. Each chapter is devoted to fundamentals of cyclic plasticity or to one of the major classes of materials, thereby providing a wide coverage of the field. The book deals with experimental observations on metals, composites, polymers and shape memory alloys, and the corresponding cyclic plasticity models for metals, polymers, particle reinforced metal matrix composites and shape memory alloys. Also, the thermo-mechanical coupled cyclic plasticity models are discussed for metals and shape memory alloys. Key features: Provides a comprehensive introduction to cyclic plasticity Presents Macroscopic and microscopic observations on the ratchetting of different materials Establishes cyclic plasticity constitutive models for different materials. Analysis of cyclic plasticity in engineering structures. This book is an important reference for students, practicing engineers and researchers who study cyclic plasticity in the areas of mechanical, civil, nuclear, and aerospace engineering as well as materials science.

Cyclic Plasticity and Low Cycle Fatigue Life of Metals

Cyclic Plasticity and Low Cycle Fatigue Life of Metals
Author : Jaroslav Polák
Publisher : Unknown
Release Date : 1991
Category :
Total pages :315
GET BOOK

Ratcheting in cyclic plasticity of metals

Ratcheting in cyclic plasticity of metals
Author : Tasnim Hassan
Publisher : Unknown
Release Date : 1993
Category : Metals
Total pages :404
GET BOOK

Internal Friction, Damping and Cyclic Plasticity

Internal Friction, Damping and Cyclic Plasticity
Author : Anonim
Publisher : ASTM International
Release Date : 1965
Category :
Total pages :1
GET BOOK

Cyclic Plasticity and Creep of Power Plant Materials

Cyclic Plasticity and Creep of Power Plant Materials
Author : Abdullah Aziz Saad
Publisher : Unknown
Release Date : 2012
Category :
Total pages :129
GET BOOK

The thermo-mechanical fatigue (TMF) of power plant components is caused by the cyclic operation of power plant due to startup and shutdown processes and due to the fluctuation of demand in daily operation. Thus, a time-dependent plasticity model is required in order to simulate the component response under cyclic thermo-mechanical loading. The overall aim behind this study is to develop a material constitutive model, which can predict the creep and cyclic loading behaviour at high temperature environment, based on the cyclic loading test data of the P91 and the P92 steels. The tests on all specimens in the study were performed using the Instron 8862 TMF machine system with a temperature uniformity of less than ±10°C within the gauge section of the specimen. For the isothermal tests on the P91 steel, fully-reversed, strain-controlled tests were conducted on a parent material of the steel at 400, 500 and 600 ̊C. For the P92 steel, the same loading parameters in the isothermal tests were performed on a parent material and a weld metal of the steels at 500, 600 and 675°C. Strain-controlled thermo-mechanical fatigue tests were conducted on the parent materials of the P91 and the P92 steels under temperature ranges of 400-600°C and 500-675°C, respectively, with in-phase (IP) and out-of-phase (OP) loading. In general, the steels exhibit cyclic softening behaviour throughout the cyclic test duration under both isothermal and anisothermal conditions. The cyclic softening behaviour of the P91 steel was further studied by analyzing stress-strain data at 600°C and by performing microstructural investigations. Scanning electron microscope (SEM) and transmission electron microscope (TEM) images were used to investigate microstructural evolution and the crack initiation of the steel at different life fractions of the tests. The TEM images of the interrupted test specimens revealed subgrain coarsening during the cyclic tests. On the other hand, the SEM images showed the initiation of microcracks at the end of the stabilisation period and the cracks were propagated in the third stage of cyclic softening. A unified, Chaboche, viscoplasticity model, which includes combined isotropic softening and kinematic hardening with a viscoplastic flow rule for time-dependent effects, was used to model the TMF behaviour of the steels The constants in the viscoplasticity model were initially determined from the first cycle stress-strain data, the maximum stress evolution during tests and the stress relaxation data. Then, the initial constants were optimized using a least-squares optimization algorithm in order to improve the general fit of the model to experimental data. The prediction of the model was further improved by including the linear nonlinear isotropic hardening in order to obtain better stress-strain behaviour in the stabilisation period. The developed viscoplasticity model was subsequently used in the finite element simulations using the ABAQUS software. The focus of the simulation is to validate the performance of the model under various types of loading. Simulation results have been compared with the isothermal test data with different strain ranges and also the anisothermal cyclic testing data, for both in-phase and out-of-phase loadings. The model's performance under 3-dimensional stress conditions was investigated by testing and simulating the P91 steel using a notched specimen under stress-controlled conditions. The simulation results show a good comparison to the experimental data.

Advances in Engineering Plasticity and its Application XIII

Advances in Engineering Plasticity and its Application XIII
Author : Fusahito Yoshida,Hiroshi Hamasaki
Publisher : Trans Tech Publications Ltd
Release Date : 2016-12-15
Category : Technology & Engineering
Total pages :736
GET BOOK

Selected, peer reviewed papers from the 13th Asia-Pacific Symposium on Engineering Plasticity and its Applications (AEPA2016), December 4-8, 2016, Hiroshima, Japan

Metal Plasticity and Fatigue at High Temperature

Metal Plasticity and Fatigue at High Temperature
Author : Denis Benasciutti,Luciano Moro,Jelena Srnec Novak
Publisher : MDPI
Release Date : 2020-05-20
Category : Technology & Engineering
Total pages :220
GET BOOK

In several industrial fields (such as automotive, steelmaking, aerospace, and fire protection systems) metals need to withstand a combination of cyclic loadings and high temperatures. In this condition, they usually exhibit an amount—more or less pronounced—of plastic deformation, often accompanied by creep or stress-relaxation phenomena. Plastic deformation under the action of cyclic loadings may cause fatigue cracks to appear, eventually leading to failures after a few cycles. In estimating the material strength under such loading conditions, the high-temperature material behavior needs to be considered against cyclic loading and creep, the experimental strength to isothermal/non-isothermal cyclic loadings and, not least of all, the choice and experimental calibration of numerical material models and the selection of the most comprehensive design approach. This book is a series of recent scientific contributions addressing several topics in the field of experimental characterization and physical-based modeling of material behavior and design methods against high-temperature loadings, with emphasis on the correlation between microstructure and strength. Several material types are considered, from stainless steel, aluminum alloys, Ni-based superalloys, spheroidal graphite iron, and copper alloys. The quality of scientific contributions in this book can assist scholars and scientists with their research in the field of metal plasticity, creep, and low-cycle fatigue.

Plasticity and Creep of Metals

Plasticity and Creep of Metals
Author : Andrew Rusinko,Konstantin Rusinko
Publisher : Springer Science & Business Media
Release Date : 2011-07-24
Category : Technology & Engineering
Total pages :434
GET BOOK

This book serves both as a textbook and a scientific work. As a textbook, the work gives a clear, thorough and systematic presentation of the fundamental postulates, theorems and principles and their applications of the classical mathematical theories of plasticity and creep. In addition to the mathematical theories, the physical theory of plasticity, the book presents the Budiansky concept of slip and its modification by M. Leonov. Special attention is given to the analysis of the advantages and shortcomings of the classical theories. In its main part, the book presents the synthetic theory of irreversible deformations, which is based on the mathematical Sanders flow plasticity theory and the physical theory, the Budiansky concept of slip. The main peculiarity of the synthetic theory is that the formulae for both plastic and creep deformation, as well their interrelations, can be derived from the single constitutive equation. Furthermore, the synthetic theory, as physical one, can take into account the real processes that take place in solids at irreversible deformation. This widens considerably the potential of the synthetic theory. In the framework of the synthetic theory such problems as creep delay, the Hazen-Kelly effect, the deformation at the break of the load trajectory, the influence of the rate of loading on the stress-strain diagram, creep at the changes of load, creep at unloading and reversed creep, have been analytically described. In the last chapter, the book shows the solution of some contemporary problems of plasticity and creep: Creep deformation at cyclic abrupt changes of temperature, The influence of irradiation on the plastic and creep deformation, Peculiarities of deformation at the phase transformation of some metals.

Cyclic Plasticity Under Shock Loading in an HCP Metal

Cyclic Plasticity Under Shock Loading in an HCP Metal
Author : Anonim
Publisher : Unknown
Release Date : 2012
Category :
Total pages :129
GET BOOK

Plate impact experiments with pressures from 2 to 20 GPa, including one shock-partial release-reshock experiment, were performed on vacuum hot-pressed S-200F Beryllium. This hexagonal close-packed (HCP) metal shows significant plasticity effects in such conditions. The experiments were modeled in a Lagrangian hydrocode using an experimentally calibrated Preston-Tonks-Wallace (PTW) constitutive model. By using the shock data to constrain a high rate portion of PTW, the model was able to generally match plasticity effects on the measured wave profile (surface velocity) during the shock loading, but not unloading. A backstress-based cyclic plasticity model to capture the quasi-elastic release (Bauschinger-type effect) was explored in order to match the unloading and reloading portions of the measured wave profiles. A comparison is made with other approaches in the literature to capture the cyclic plasticity in shock conditions.

Multiscale Phenomena in Plasticity: From Experiments to Phenomenology, Modelling and Materials Engineering

Multiscale Phenomena in Plasticity: From Experiments to Phenomenology, Modelling and Materials Engineering
Author : Joël Lépinoux,Dominique Mazière,Vassilis Pontikis,Georges Saada
Publisher : Springer Science & Business Media
Release Date : 2012-12-06
Category : Technology & Engineering
Total pages :529
GET BOOK

A profusion of research and results on the mechanical behaviour of crystalline solids has followed the discovery of dislocations in the early thirties. This trend has been enhanced by the development of powerful experimental techniques. particularly X ray diffraction. transmission and scanning electron microscopy. microanalysis. The technological advancement has given rise to the study of various and complex materials. not to speak of those recently invented. whose mechanical properties need to be mastered. either for their lise as structural materials. or more simply for detenllining their fonnability processes. As is often the case this fast growth has been diverted both by the burial of early fundamental results which are rediscovered more or less accurately. and by the too fast publication of inaccurate results. which propagate widely. and are accepted without criticism. Examples of these statements abound. and will not be quoted here for the sake of dispassionateness. Understanding the mechanical properties of materials implies the use of various experimental techniques. combined with a good theoretical knowledge of elasticity. thermodynamics and solid state physics. The recent development of various computer techniques (simulation. ab initio calculations) has added to the difficulty of gathering the experimental information. and mastering the theoretical understanding. No laboratory is equipped with all the possible experimental settings. almost no scientist masters all this theoretical kno\vledge. Therefore. cooperation between scientists is needed more than even before.

Theory of Plasticity

Theory of Plasticity
Author : Jagabanduhu Chakrabarty
Publisher : Elsevier
Release Date : 2012-12-02
Category : Technology & Engineering
Total pages :896
GET BOOK

Plasticity is concerned with the mechanics of materials deformed beyond their elastic limit. A strong knowledge of plasticity is essential for engineers dealing with a wide range of engineering problems, such as those encountered in the forming of metals, the design of pressure vessels, the mechanics of impact, civil and structural engineering, as well as the understanding of fatigue and the economical design of structures. Theory of Plasticity is the most comprehensive reference on the subject as well as the most up to date -- no other significant Plasticity reference has been published recently, making this of great interest to academics and professionals. This new edition presents extensive new material on the use of computational methods, plus coverage of important developments in cyclic plasticity and soil plasticity. A complete plasticity reference for graduate students, researchers and practicing engineers; no other book offers such an up to date or comprehensive reference on this key continuum mechanics subject Updates with new material on computational analysis and applications, new end of chapter exercises Plasticity is a key subject in all mechanical engineering disciplines, as well as in manufacturing engineering and civil engineering. Chakrabarty is one of the subject's leading figures.

Nonlinear Fracture Mechanics for Engineers

Nonlinear Fracture Mechanics for Engineers
Author : Ashok Saxena
Publisher : CRC Press
Release Date : 1998-03-31
Category : Science
Total pages :496
GET BOOK

Fracture mechanics is an essential tool for engineers in a number of different engineering disciplines. For example, an engineer in a metals- or plastics-dependent industry might use fracture mechanics to evaluate and characterize materials, while another in aerospace or construction might use fracture mechanics-based methods for product design and service life-time estimation. This balanced treatment, which covers both applied engineering and mathematical aspects of the topic, provides a much-needed multidisciplinary treatment of the field suitable for the many diverse applications of the subject. While texts on linear elastic fracture mechanics abound, no complete treatments of the complex topic of nonlinear fracture mechanics have been available in a textbook format - until now. Written by an author with extensive industry credentials as well as academic experience, Nonlinear Fracture Mechanics for Engineers examines nonlinear fracture mechanics and its applications in mechanics, materials testing, and life prediction of components. The book includes the first-ever complete examination of creep and creep-fatigue crack growth. Examples and problems reinforce the concepts presented. A complete chapter on applications and case studies involving nonlinear fracture mechanics completes this thorough evaluation of this dynamic field of study.

Anisotropy and Localization of Plastic Deformation

Anisotropy and Localization of Plastic Deformation
Author : J.P. Boehler,Akhtar S. Khan
Publisher : Springer Science & Business Media
Release Date : 2012-12-06
Category : Technology & Engineering
Total pages :701
GET BOOK

Present developments in materials science, mechanics and engineering, as well as the demands of modern technology, result in a new and growing interest in plasticity and in bordering domains of the mechanical behavior of materials. This growing interest is attested to by the success of both The International Journal of Plasticity, which after its inception rapidly became the leading journal for plasticity research, and the series ofInternational Symposia on Plasticity and Its Current Applications, which is now the premier international forum for plasticity research dissemination. The First International Symposium on Plasticity and Its Current Applications was conceived and organized by Professor Akhtar S. Khan, and was held at the University of Oklahoma (Norman, Oklahoma, USA) from July 30 to August 3, 1984. It was attended by over one hundred scientists from fifteen countries. "Plasticity '89: the Second International Symposium on Plasticity and Its Current Applications" was held at Mie University (Tsu, Japan) from July 31 to August 4, 1989; this symposium was co-chaired by Professors Khan and Tokuda. The main emphasis of this meeting was on dynamic plasticity and micromechanics, although it included other aspects of plasticity as well. It was attended by over two hundred researchers from twenty-three nations.

Plasticity of Metals: Experiments, Models, Computation

Plasticity of Metals: Experiments, Models, Computation
Author : Deutsche Forschungsgemeinschaft
Publisher : Wiley-VCH
Release Date : 2001
Category : Science
Total pages :398
GET BOOK

This is the final report, drawing its conclusions and results from many individual papers and co-workers at the Institute for Structural Analysis of the Technical University of Braunschweig. It shows the correlation between energetic and mechanical quantities of face-centred cubic metals, cold worked and softened to different states. Constitutive models for the plastic of metals are developed and the application of these models is presented. The improvements achieved by this contribution cover the material functions, the shape of yield surfaces, and the consideration of distributed experimental data within the mumerical analysis.

Advances in Engineering Plasticity

Advances in Engineering Plasticity
Author : T.X. Yu,Qing Ping Sun,Jang Kyo Kim
Publisher : Trans Tech Publications Ltd
Release Date : 2000-04-09
Category : Technology & Engineering
Total pages :856
GET BOOK

Volume is indexed by Thomson Reuters CPCI-S (WoS). From the early industrial revolution, metal working has been the major driving force for the development of many manufacturing technologies. “Advances in Engineering Plasticity” reports on recent developments in the field of metal forming and plasticity research from both the fundamental science and industrial application perspective.