November 24, 2020

Download Ebook Free Data Mining For Bioinformatics Applications

Data Mining for Bioinformatics Applications

Data Mining for Bioinformatics Applications
Author : He Zengyou
Publisher : Woodhead Publishing
Release Date : 2015-06-09
Category : Computers
Total pages :100
GET BOOK

Data Mining for Bioinformatics Applications provides valuable information on the data mining methods have been widely used for solving real bioinformatics problems, including problem definition, data collection, data preprocessing, modeling, and validation. The text uses an example-based method to illustrate how to apply data mining techniques to solve real bioinformatics problems, containing 45 bioinformatics problems that have been investigated in recent research. For each example, the entire data mining process is described, ranging from data preprocessing to modeling and result validation. Provides valuable information on the data mining methods have been widely used for solving real bioinformatics problems Uses an example-based method to illustrate how to apply data mining techniques to solve real bioinformatics problems Contains 45 bioinformatics problems that have been investigated in recent research

Data Mining for Bioinformatics

Data Mining for Bioinformatics
Author : Sumeet Dua,Pradeep Chowriappa
Publisher : CRC Press
Release Date : 2012-11-06
Category : Computers
Total pages :348
GET BOOK

Covering theory, algorithms, and methodologies, as well as data mining technologies, Data Mining for Bioinformatics provides a comprehensive discussion of data-intensive computations used in data mining with applications in bioinformatics. It supplies a broad, yet in-depth, overview of the application domains of data mining for bioinformatics to he

Data Mining in Bioinformatics

Data Mining in Bioinformatics
Author : Jason T. L. Wang,Mohammed J. Zaki,Hannu Toivonen,Dennis Shasha
Publisher : Springer Science & Business Media
Release Date : 2006-03-30
Category : Computers
Total pages :340
GET BOOK

Written especially for computer scientists, all necessary biology is explained. Presents new techniques on gene expression data mining, gene mapping for disease detection, and phylogenetic knowledge discovery.

Textbook of Machine Learning and Data Mining

Textbook of Machine Learning and Data Mining
Author : Hiroshi Mamitsuka
Publisher : Unknown
Release Date : 2018-09-12
Category : Computers
Total pages :388
GET BOOK

Data-driven approaches, particularly machine learning and data mining, are the main driving force of the current artificial intelligence technology. This book covers a wide variety of methods in machine learning and data mining, dividing them from a viewpoint of data types, which begin with rather simple vectors and end by graphs and also combination of different data types. This book describes standard techniques of machine learning and data mining for each data type, especially focusing on the relevance and difference among them. Also after explaining a series of machine learning methods for seven different data types, this book has a chapter for standard validation methods on empirical results obtained by applying machine learning methods to data. This book can be used for a variety of objectives, including an introductory textbook of studying machine learning and a (first step) book to start machine learning research, etc.

Advanced Data Mining Technologies in Bioinformatics

Advanced Data Mining Technologies in Bioinformatics
Author : Hsu, Hui-Huang
Publisher : IGI Global
Release Date : 2006-03-31
Category : Computers
Total pages :342
GET BOOK

"This book covers research topics of data mining on bioinformatics presenting the basics and problems of bioinformatics and applications of data mining technologies pertaining to the field"--Provided by publisher.

Multiobjective Genetic Algorithms for Clustering

Multiobjective Genetic Algorithms for Clustering
Author : Ujjwal Maulik,Sanghamitra Bandyopadhyay,Anirban Mukhopadhyay
Publisher : Springer Science & Business Media
Release Date : 2011-09-01
Category : Computers
Total pages :281
GET BOOK

This is the first book primarily dedicated to clustering using multiobjective genetic algorithms with extensive real-life applications in data mining and bioinformatics. The authors first offer detailed introductions to the relevant techniques – genetic algorithms, multiobjective optimization, soft computing, data mining and bioinformatics. They then demonstrate systematic applications of these techniques to real-world problems in the areas of data mining, bioinformatics and geoscience. The authors offer detailed theoretical and statistical notes, guides to future research, and chapter summaries. The book can be used as a textbook and as a reference book by graduate students and academic and industrial researchers in the areas of soft computing, data mining, bioinformatics and geoscience.

Knowledge Discovery in Bioinformatics

Knowledge Discovery in Bioinformatics
Author : Xiaohua Hu,Yi Pan
Publisher : John Wiley & Sons
Release Date : 2007-06-11
Category : Technology & Engineering
Total pages :400
GET BOOK

The purpose of this edited book is to bring together the ideas and findings of data mining researchers and bioinformaticians by discussing cutting-edge research topics such as, gene expressions, protein/RNA structure prediction, phylogenetics, sequence and structural motifs, genomics and proteomics, gene findings, drug design, RNAi and microRNA analysis, text mining in bioinformatics, modelling of biochemical pathways, biomedical ontologies, system biology and pathways, and biological database management.

Data Mining for Scientific and Engineering Applications

Data Mining for Scientific and Engineering Applications
Author : R.L. Grossman,C. Kamath,V. Kumar,P. Kegelmeyer,R. Namburu
Publisher : Springer Science & Business Media
Release Date : 2001-10-31
Category : Computers
Total pages :605
GET BOOK

Advances in technology are making massive data sets common in many scientific disciplines, such as astronomy, medical imaging, bio-informatics, combinatorial chemistry, remote sensing, and physics. To find useful information in these data sets, scientists and engineers are turning to data mining techniques. This book is a collection of papers based on the first two in a series of workshops on mining scientific datasets. It illustrates the diversity of problems and application areas that can benefit from data mining, as well as the issues and challenges that differentiate scientific data mining from its commercial counterpart. While the focus of the book is on mining scientific data, the work is of broader interest as many of the techniques can be applied equally well to data arising in business and web applications. Audience: This work would be an excellent text for students and researchers who are familiar with the basic principles of data mining and want to learn more about the application of data mining to their problem in science or engineering.

Bioinformatics

Bioinformatics
Author : M. H. Fulekar
Publisher : Springer Science & Business Media
Release Date : 2009-03-24
Category : Science
Total pages :247
GET BOOK

Bioinformatics, computational biology, is a relatively new field that applies computer science and information technology to biology. In recent years, the discipline of bioinformatics has allowed biologists to make full use of the advances in Computer sciences and Computational statistics for advancing the biological data. Researchers in life sciences generate, collect and need to analyze an increasing number of different types of scientific data, DNA, RNA and protein sequences, in-situ and microarray gene expression including 3D protein structures and biological pathways. This book is aiming to provide information on bioinformatics at various levels. The chapters included in this book cover introductory to advanced aspects, including applications of various documented research work and specific case studies related to bioinformatics. This book will be of immense value to readers of different backgrounds such as engineers, scientists, consultants and policy makers for industry, government, academics and social and private organisations.

Biological Data Mining and Its Applications in Healthcare

Biological Data Mining and Its Applications in Healthcare
Author : Xiaoli Li,See-Kiong Ng,Jason T L Wang
Publisher : World Scientific
Release Date : 2013-11-28
Category : Computers
Total pages :436
GET BOOK

Biologists are stepping up their efforts in understanding the biological processes that underlie disease pathways in the clinical contexts. This has resulted in a flood of biological and clinical data from genomic and protein sequences, DNA microarrays, protein interactions, biomedical images, to disease pathways and electronic health records. To exploit these data for discovering new knowledge that can be translated into clinical applications, there are fundamental data analysis difficulties that have to be overcome. Practical issues such as handling noisy and incomplete data, processing compute-intensive tasks, and integrating various data sources, are new challenges faced by biologists in the post-genome era. This book will cover the fundamentals of state-of-the-art data mining techniques which have been designed to handle such challenging data analysis problems, and demonstrate with real applications how biologists and clinical scientists can employ data mining to enable them to make meaningful observations and discoveries from a wide array of heterogeneous data from molecular biology to pharmaceutical and clinical domains. Contents:Sequence Analysis:Mining the Sequence Databases for Homology Detection: Application to Recognition of Functions of Trypanosoma brucei brucei Proteins and Drug Targets (G Ramakrishnan, V S Gowri, R Mudgal, N R Chandra and N Srinivasan)Identification of Genes and Their Regulatory Regions Based on Multiple Physical and Structural Properties of a DNA Sequence (Xi Yang, Nancy Yu Song and Hong Yan)Mining Genomic Sequence Data for Related Sequences Using Pairwise Statistical Significance (Yuhong Zhang and Yunbo Rao)Biological Network Mining:Indexing for Similarity Queries on Biological Networks (Günhan Gülsoy, Md Mahmudul Hasan, Yusuf Kavurucu and Tamer Kahveci)Theory and Method of Completion for a Boolean Regulatory Network Using Observed Data (Takeyuki Tamura and Tatsuya Akutsu)Mining Frequent Subgraph Patterns for Classifying Biological Data (Saeed Salem)On the Integration of Prior Knowledge in the Inference of Regulatory Networks (Catharina Olsen, Benjamin Haibe-Kains, John Quackenbush and Gianluca Bontempi)Classification, Trend Analysis and 3D Medical Images:Classification and Its Application to Drug-Target Prediction (Jian-Ping Mei, Chee-Keong Kwoh, Peng Yang and Xiao-Li Li)Characterization and Prediction of Human Protein-Protein Interactions (Yi Xiong, Dan Syzmanski and Daisuke Kihara)Trend Analysis (Wen-Chuan Xie, Miao He and Jake Yue Chen)Data Acquisition and Preprocessing on Three Dimensional Medical Images (Yuhua Jiao, Liang Chen and Jin Chen)Text Mining and Its Biomedical Applications:Text Mining in Biomedicine and Healthcare (Hong-Jie Dai, Chi-Yang Wu, Richard Tzong-Han Tsai and Wen-Lian Hsu)Learning to Rank Biomedical Documents with Only Positive and Unlabeled Examples: A Case Study (Mingzhu Zhu, Yi-Fang Brook Wu, Meghana Samir Vasavada and Jason T L Wang)Automated Mining of Disease-Specific Protein Interaction Networks Based on Biomedical Literature (Rajesh Chowdhary, Boris R Jankovic, Rachel V Stankowski, John A C Archer, Xiangliang Zhang, Xin Gao, Vladimir B Bajic) Readership: Students, professionals, those who perform biological, medical and bioinformatics research. Keywords:Healthcare;Data Mining;Biological Data Mining;Protein Interactions;Gene Regulation;Text Mining;Biological Literature Mining;Drug Discovery;Disease Network;Biological Network;Graph Mining;Sequence Analysis;Structure Analysis;Trend Analysis;Medical ImagesKey Features:Each chapter of this book will include a section to introduce a specific class of data mining techniques, which will be written in a tutorial style so that even non-computational readers such as biologists and healthcare researchers can appreciate themThe book will disseminate the impact research results and best practices of data mining approaches to the cross-disciplinary researchers and practitioners from both the data mining disciplines and the life sciences domains. The authors of the book will be well-known data mining experts, bioinformaticians and cliniciansEach chapter will also provide a detailed description on how to apply the data mining techniques in real-world biological and clinical applications. Thus, readers of this book can easily appreciate the computational techniques and how they can be used to address their own research issues

Contrast Data Mining

Contrast Data Mining
Author : Guozhu Dong,James Bailey
Publisher : CRC Press
Release Date : 2016-04-19
Category : Business & Economics
Total pages :434
GET BOOK

A Fruitful Field for Researching Data Mining Methodology and for Solving Real-Life Problems Contrast Data Mining: Concepts, Algorithms, and Applications collects recent results from this specialized area of data mining that have previously been scattered in the literature, making them more accessible to researchers and developers in data mining and other fields. The book not only presents concepts and techniques for contrast data mining, but also explores the use of contrast mining to solve challenging problems in various scientific, medical, and business domains. Learn from Real Case Studies of Contrast Mining Applications In this volume, researchers from around the world specializing in architecture engineering, bioinformatics, computer science, medicine, and systems engineering focus on the mining and use of contrast patterns. They demonstrate many useful and powerful capabilities of a variety of contrast mining techniques and algorithms, including tree-based structures, zero-suppressed binary decision diagrams, data cube representations, and clustering algorithms. They also examine how contrast mining is used in leukemia characterization, discriminative gene transfer and microarray analysis, computational toxicology, spatial and image data classification, voting analysis, heart disease prediction, crime analysis, understanding customer behavior, genetic algorithms, and network security.

Data Mining in Biomedical Imaging, Signaling, and Systems

Data Mining in Biomedical Imaging, Signaling, and Systems
Author : Sumeet Dua,Rajendra Acharya U
Publisher : CRC Press
Release Date : 2016-04-19
Category : Computers
Total pages :440
GET BOOK

Data mining can help pinpoint hidden information in medical data and accurately differentiate pathological from normal data. It can help to extract hidden features from patient groups and disease states and can aid in automated decision making. Data Mining in Biomedical Imaging, Signaling, and Systems provides an in-depth examination of the biomedi

Bioinformatics Technologies

Bioinformatics Technologies
Author : Yi-Ping Phoebe Chen
Publisher : Springer Science & Business Media
Release Date : 2005-01-18
Category : Computers
Total pages :396
GET BOOK

Introductio to bioinformatics. Overview of structural bioinformatics. Database warehousing in bioinformatics. Modeling for bioinformatics. Pattern matching for motifs. Visualization and fractal analysis of biological sequences. Microarray data analysis.

Encyclopedia of Bioinformatics and Computational Biology

Encyclopedia of Bioinformatics and Computational Biology
Author : Anonim
Publisher : Elsevier
Release Date : 2018-08-21
Category : Medical
Total pages :3284
GET BOOK

Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics combines elements of computer science, information technology, mathematics, statistics and biotechnology, providing the methodology and in silico solutions to mine biological data and processes. The book covers Theory, Topics and Applications, with a special focus on Integrative –omics and Systems Biology. The theoretical, methodological underpinnings of BCB, including phylogeny are covered, as are more current areas of focus, such as translational bioinformatics, cheminformatics, and environmental informatics. Finally, Applications provide guidance for commonly asked questions. This major reference work spans basic and cutting-edge methodologies authored by leaders in the field, providing an invaluable resource for students, scientists, professionals in research institutes, and a broad swath of researchers in biotechnology and the biomedical and pharmaceutical industries. Brings together information from computer science, information technology, mathematics, statistics and biotechnology Written and reviewed by leading experts in the field, providing a unique and authoritative resource Focuses on the main theoretical and methodological concepts before expanding on specific topics and applications Includes interactive images, multimedia tools and crosslinking to further resources and databases

Programming Collective Intelligence

Programming Collective Intelligence
Author : Toby Segaran
Publisher : "O'Reilly Media, Inc."
Release Date : 2007-08-16
Category : Computers
Total pages :362
GET BOOK

Want to tap the power behind search rankings, product recommendations, social bookmarking, and online matchmaking? This fascinating book demonstrates how you can build Web 2.0 applications to mine the enormous amount of data created by people on the Internet. With the sophisticated algorithms in this book, you can write smart programs to access interesting datasets from other web sites, collect data from users of your own applications, and analyze and understand the data once you've found it. Programming Collective Intelligence takes you into the world of machine learning and statistics, and explains how to draw conclusions about user experience, marketing, personal tastes, and human behavior in general -- all from information that you and others collect every day. Each algorithm is described clearly and concisely with code that can immediately be used on your web site, blog, Wiki, or specialized application. This book explains: Collaborative filtering techniques that enable online retailers to recommend products or media Methods of clustering to detect groups of similar items in a large dataset Search engine features -- crawlers, indexers, query engines, and the PageRank algorithm Optimization algorithms that search millions of possible solutions to a problem and choose the best one Bayesian filtering, used in spam filters for classifying documents based on word types and other features Using decision trees not only to make predictions, but to model the way decisions are made Predicting numerical values rather than classifications to build price models Support vector machines to match people in online dating sites Non-negative matrix factorization to find the independent features in a dataset Evolving intelligence for problem solving -- how a computer develops its skill by improving its own code the more it plays a game Each chapter includes exercises for extending the algorithms to make them more powerful. Go beyond simple database-backed applications and put the wealth of Internet data to work for you. "Bravo! I cannot think of a better way for a developer to first learn these algorithms and methods, nor can I think of a better way for me (an old AI dog) to reinvigorate my knowledge of the details." -- Dan Russell, Google "Toby's book does a great job of breaking down the complex subject matter of machine-learning algorithms into practical, easy-to-understand examples that can be directly applied to analysis of social interaction across the Web today. If I had this book two years ago, it would have saved precious time going down some fruitless paths." -- Tim Wolters, CTO, Collective Intellect