December 5, 2020

Download Ebook Free Directed Self-assembly Of Block Co-polymers For Nano-manufacturing

Directed Self-assembly of Block Co-polymers for Nano-manufacturing

Directed Self-assembly of Block Co-polymers for Nano-manufacturing
Author : Roel Gronheid,Paul Nealey
Publisher : Woodhead Publishing
Release Date : 2015-07-17
Category : Technology & Engineering
Total pages :328
GET BOOK

The directed self-assembly (DSA) method of patterning for microelectronics uses polymer phase-separation to generate features of less than 20nm, with the positions of self-assembling materials externally guided into the desired pattern. Directed self-assembly of Block Co-polymers for Nano-manufacturing reviews the design, production, applications and future developments needed to facilitate the widescale adoption of this promising technology. Beginning with a solid overview of the physics and chemistry of block copolymer (BCP) materials, Part 1 covers the synthesis of new materials and new processing methods for DSA. Part 2 then goes on to outline the key modelling and characterization principles of DSA, reviewing templates and patterning using topographical and chemically modified surfaces, line edge roughness and dimensional control, x-ray scattering for characterization, and nanoscale driven assembly. Finally, Part 3 discusses application areas and related issues for DSA in nano-manufacturing, including for basic logic circuit design, the inverse DSA problem, design decomposition and the modelling and analysis of large scale, template self-assembly manufacturing techniques. Authoritative outlining of theoretical principles and modeling techniques to give a thorough introdution to the topic Discusses a broad range of practical applications for directed self-assembly in nano-manufacturing Highlights the importance of this technology to both the present and future of nano-manufacturing by exploring its potential use in a range of fields

Nanomanufacturing Handbook

Nanomanufacturing Handbook
Author : Ahmed Busnaina
Publisher : CRC Press
Release Date : 2017-12-19
Category : Technology & Engineering
Total pages :432
GET BOOK

Breakthroughs in nanotechnology have been coming at a rapid pace over the past few years. This was fueled by significant worldwide investments by governments and industry. But if these promising young technologies cannot begin to show commercial viability soon, that funding is in danger of disappearing as investors lose their appetites and the economic and scientific promise of nanotechnology may not be realized. Scrutinizing the barriers to commercial scale-up of nanotechnologies, the Nanomanufacturing Handbook presents a broad survey of the research being done to bring nanotechnology out of the laboratory and into the factory. Current research into nanotechnology focuses on the underlying science, but as this forward-looking handbook points out, the immediate need is for research into scale-up, process robustness, and system integration issues. Taking that message to heart, this book collects cutting-edge research from top experts who examine such topics as surface-programmed assembly, fabrication and applications of single-walled carbon nanotubes (SWNTs) including nanoelectronics, manufacturing nanoelectrical contacts, room-temperature nanoimprint and nanocontact technologies, nanocontacts and switch reliability, defects and surface preparation, and other innovative, application-driven initiatives. In addition to these technical issues, the author provides a survey of the current state of nanomanufacturing in the United States—the first of its kind—and coverage also reaches into patenting nanotechnologies as well as regulatory and societal issues. With timely, authoritative coverage accompanied by numerous illustrations, the Nanomanufacturing Handbook clarifies the current challenges facing industrial-scale nanotechnologies and outlines advanced tools and strategies that will help overcome them.

Microlithography

Microlithography
Author : Bruce W. Smith,Kazuaki Suzuki
Publisher : CRC Press
Release Date : 2020-05-01
Category : Technology & Engineering
Total pages :838
GET BOOK

The completely revised Third Edition to the bestselling Microlithography: Science and Technology provides a balanced treatment of theoretical and operational considerations, from fundamental principles to advanced topics of nanoscale lithography. The book is divided into chapters covering all important aspects related to the imaging, materials, and processes that have been necessary to drive semiconductor lithography toward nanometer-scale generations. Renowned experts from the world’s leading academic and industrial organizations have provided in-depth coverage of the technologies involved in optical, deep-ultraviolet (DUV), immersion, multiple patterning, extreme ultraviolet (EUV), maskless, nanoimprint, and directed self-assembly lithography, together with comprehensive descriptions of the advanced materials and processes involved. New in the Third Edition In addition to the full revision of existing chapters, this new Third Edition features coverage of the technologies that have emerged over the past several years, including multiple patterning lithography, design for manufacturing, design process technology co-optimization, maskless lithography, and directed self-assembly. New advances in lithography modeling are covered as well as fully updated information detailing the new technologies, systems, materials, and processes for optical UV, DUV, immersion, and EUV lithography. The Third Edition of Microlithography: Science and Technology authoritatively covers the science and engineering involved in the latest generations of microlithography and looks ahead to the future systems and technologies that will bring the next generations to fruition. Loaded with illustrations, equations, tables, and time-saving references to the most current technology, this book is the most comprehensive and reliable source for anyone, from student to seasoned professional, looking to better understand the complex world of microlithography science and technology.

Molecular Self-assembly in Nanoscience and Nanotechnology

Molecular Self-assembly in Nanoscience and Nanotechnology
Author : Ayben Kilislioglu,Selcan Karakus
Publisher : BoD – Books on Demand
Release Date : 2017-05-10
Category : Science
Total pages :142
GET BOOK

Self-assembly is a common principle in molecular fabrication of natural and synthetic systems and has many important applications in the fields of nanoscience and nanotechnology. This book provides clear explanations of the principles of self-assembly with the limitations along with examples and research-based results with discussion for students, researchers, and professions.

Handbook of Nanoscience, Engineering, and Technology

Handbook of Nanoscience, Engineering, and Technology
Author : William A. Goddard III,Donald Brenner,Sergey Edward Lyshevski,Gerald J Iafrate
Publisher : CRC Press
Release Date : 2007-05-03
Category : Science
Total pages :1080
GET BOOK

The ability to study and manipulate matter at the nanoscale is the defining feature of 21st-century science. The first edition of the standard-setting Handbook of Nanoscience, Engineering, and Technology saw the field through its infancy. Reassembling the preeminent team of leading scientists and researchers from all areas of nanoscience and nanote

Self-assembled Patterns of Block Copolymer/homopolymer Blends

Self-assembled Patterns of Block Copolymer/homopolymer Blends
Author : Dongsik Park
Publisher : Unknown
Release Date : 2008
Category : Block copolymers
Total pages :225
GET BOOK

Many researchers have studied the orientation behavior of block copolymers (BCPs) with the most recent works directed towards nanotechnologies. Self-assembly of block copolymers is very relevant in controlling periodic nanostructures for nanotechnological applications. Nanotechnological applications of BCPs are possible due to their physical properties related to mass and energy transport, as well as mechanical, electrical, and optical properties. These properties provide substantial benefits in nanostructure membranes, nanotemplates, photonic crystals, and high-density information storage media. In many applications, such nanopatterns need to be achieved as ordered and tunable structures. Consequently, the control of orientation of such structures with defect-free ordering on larger length scales still remain as major research challenge in many cases. In addition to their pure block forms, blends of copolymers with other polymers offer productive research areas in relation to nanostructural self-assembly. We prepared well-aligned nanocylinders into block copolymer over the enhanced sample area and scale of height without any external field applications or modification of interaction between the sample and the substrate. Self-assembled 3-dimensional perpendicular cylinder orientation was achieved mainly by blending of minority homopolymer into the blockcopolymer. Thus, this study investigated a spontaneous and simple method for the orientation of perpendicular cylinders in BCP/homopolymer mixtures on a preferential substrate, by increasing the interaction force between the homologous polymer pair at a fixed composition of minority block component. Since the thermodynamical changes have been simply accomplished by the control of incompatibility between the block components, the intrinsic advantages of block copolymer nanopatterning, such as fast and spontaneous 3-dimensional nanopatterning with a high thermodynamic stability and reproducibility, have been completely preserved in this fabrication strategy. By exploiting thermodynamical changes using temperature variation and by blending a homopolymer with well controlled molecular weight, we illustrated that redistribution of homopolymer resulted in a shift of phase boundaries and in the stabilization of well-ordered structures to create new opportunities for nanotechnologies.

Generating Micro- and Nanopatterns on Polymeric Materials

Generating Micro- and Nanopatterns on Polymeric Materials
Author : Aránzazu del Campo,Eduard Arzt
Publisher : John Wiley & Sons
Release Date : 2011-04-08
Category : Technology & Engineering
Total pages :390
GET BOOK

New micro and nanopatterning technologies have been developed in the last years as less costly and more flexible alternatives to phtolithograpic processing. These technologies have not only impacted on recent developments in microelectronics, but also in emerging fields such as disposable biosensors, scaffolds for tissue engineering, non-biofouling coatings, high adherence devices, or photonic structures for the visible spectrum. This handbook presents the current processing methods suitable for the fabrication of micro- and nanostructured surfaces made out of polymeric materials. It covers the steps and materials involved, the resulting structures, and is rounded off by a part on applications. As a result, chemists, material scientists, and physicists gain a critical understanding of this topic at an early stage of its development.

Gyroid Optical Metamaterials

Gyroid Optical Metamaterials
Author : James A. Dolan
Publisher : Springer
Release Date : 2018-11-04
Category : Science
Total pages :132
GET BOOK

This thesis explores the fabrication of gyroid-forming block copolymer templates and the optical properties of the resulting gyroid optical metamaterials, significantly contributing to our understanding of both. It demonstrates solvent vapour annealing to improve the long-range order of the templates, and investigates the unique crystallisation behaviour of their semicrystalline block. Furthermore, it shows that gyroid optical metamaterials that exhibit only short-range order are optically equivalent to nanoporous gold, and that the anomalous linear dichroism of gyroid optical metamaterials with long-range order is the result of the surface termination of the bulk gyroid morphology. Optical metamaterials are artificially engineered materials that, by virtue of their structure rather than their chemistry, may exhibit various optical properties not otherwise encountered in nature (e.g. a negative refractive index). However, these structures must be significantly smaller than the wavelength of visible light and are therefore challenging to fabricate using traditional “top down” techniques. Instead, a “bottom up” approach can be used, whereby optical metamaterials are fabricated via templates created by the self-assembly of block-copolymers. One such morphology is the gyroid, a chiral, continuous and triply periodic cubic network found in a range of natural and synthetic self-assembled systems.

Nanostructured Soft Matter

Nanostructured Soft Matter
Author : A.V. Zvelindovsky
Publisher : Springer Science & Business Media
Release Date : 2007-11-06
Category : Science
Total pages :628
GET BOOK

This book provides an interdisciplinary overview of a new and broad class of materials under the unifying name Nanostructured Soft Matter. It covers materials ranging from short amphiphilic molecules to block copolymers, proteins, colloids and their composites, microemulsions and bio-inspired systems such as vesicles.

Directed Self-assembly of Diblock Copolymer Thin Films on Chemically Nanopatterned Substrates

Directed Self-assembly of Diblock Copolymer Thin Films on Chemically Nanopatterned Substrates
Author : Erik WiIliam Edwards
Publisher : Unknown
Release Date : 2005
Category :
Total pages :211
GET BOOK

Morphology, Directed Self-assembly and Pattern Transfer from a High Molecular Weight Polystyrene-block-poly(dimethylsiloxane) Block Copolymer Film

Morphology, Directed Self-assembly and Pattern Transfer from a High Molecular Weight Polystyrene-block-poly(dimethylsiloxane) Block Copolymer Film
Author : Anonim
Publisher : Unknown
Release Date : 2017
Category :
Total pages :129
GET BOOK

Abstract: The self-assembly of block copolymers with large feature sizes is inherently challenging as the large kinetic barrier arising from chain entanglement of high molecular weight (MW) polymers limits the extent over which long-range ordered microdomains can be achieved. Here, we illustrate the evolution of thin film morphology from a diblock copolymer of polystyrene-block-poly(dimethylsiloxane) exhibiting total number average MW of 123 kg mol −1, and demonstrate the formation of layers of well-ordered cylindrical microdomains under appropriate conditions of binary solvent mix ratio, commensurate film thickness, and solvent vapor annealing time. Directed self-assembly of the block copolymer within lithographically patterned trenches occurs with alignment of cylinders parallel to the sidewalls. Fabrication of ordered cobalt nanowire arrays by pattern transfer was also implemented, and their magnetic properties and domain wall behavior were characterized.

Materials Nanoarchitectonics

Materials Nanoarchitectonics
Author : Katsuhiko Ariga,Mitsuhiro Ebara
Publisher : John Wiley & Sons
Release Date : 2018-01-15
Category : Technology & Engineering
Total pages :328
GET BOOK

A unique overview of the manufacture of and applications for materials nanoarchitectonics, placing otherwise hard-to-find information in context. Edited by highly respected researchers from the most renowned materials science institute in Japan, the first part of this volume focuses on the fabrication and characterization of zero to three-dimensional nanomaterials, while the second part presents already existing as well as emerging applications in physics, chemistry, biology, and biomedicine.

Directed Self-assembly of Block Copolymer Films on Chemically Nanopatterned Surfaces

Directed Self-assembly of Block Copolymer Films on Chemically Nanopatterned Surfaces
Author : Adam M. Welander
Publisher : Unknown
Release Date : 2009
Category :
Total pages :88
GET BOOK

Inorganic Nanoarchitectures by Organic Self-Assembly

Inorganic Nanoarchitectures by Organic Self-Assembly
Author : Stefan Guldin
Publisher : Springer Science & Business Media
Release Date : 2013-06-04
Category : Technology & Engineering
Total pages :165
GET BOOK

Macromolecular self-assembly - driven by weak, non-covalent, intermolecular forces - is a common principle of structure formation in natural and synthetic organic materials. The variability in material arrangement on the nanometre length scale makes this an ideal way of matching the structure-function demands of photonic and optoelectronic devices. However, suitable soft matter systems typically lack the appropriate photoactivity, conductivity or chemically stability. This thesis explores the implementation of soft matter design principles for inorganic thin film nanoarchitectures. Sacrificial block copolymers and colloids are employed as structure-directing agents for the co-assembly of solution-based inorganic materials, such as TiO_2 and SiO_2. Novel fabrication and characterization methods allow unprecedented control of material formation on the 10 – 500 nm length scale, allowing the design of material architectures with interesting photonic and optoelectronic properties.