January 26, 2021

Download Ebook Free Excitonic Effects And Bandgap Instabilities In Perovskite Solar Cells

Excitonic Effects and Bandgap Instabilities in Perovskite Solar Cells

Excitonic Effects and Bandgap Instabilities in Perovskite Solar Cells
Author : Ruf, Fabian
Publisher : KIT Scientific Publishing
Release Date : 2020-07-22
Category : Science
Total pages :234
GET BOOK

Perovskite solar cells are the new hope of next-generation photovoltaic concepts for sustainable energy generation. Regarding their favorable optoelectronic properties, bound electron-hole pairs (so-called excitons) play a significant role and are thoroughly investigated utilizing various spectroscopic methods. Moreover, bandgap instabilities caused by segregation effects in mixed perovskites are analyzed in detail using electroreflectance spectroscopy and structural characterization techniques.

Semiconductor Nanotechnology

Semiconductor Nanotechnology
Author : Stephen M. Goodnick,Anatoli Korkin,Robert Nemanich
Publisher : Springer
Release Date : 2018-07-26
Category : Technology & Engineering
Total pages :236
GET BOOK

This book presents research dedicated to solving scientific and technological problems in many areas of electronics, photonics and renewable energy. Energy and information are interconnected and are essential elements for the development of human society. Transmission, processing and storage of information requires energy consumption, while the efficient use and access to new energy sources requires new information (ideas and expertise) and the design of novel systems such as photovoltaic devices, fuel cells and batteries. Semiconductor physics creates the knowledge base for the development of information (computers, cell phones, etc.) and energy (photovoltaic) technologies. The exchange of ideas and expertise between these two technologies is critical and expands beyond semiconductors. Continued progress in information and renewable energy technologies requires miniaturization of devices and reduction of costs, energy and material consumption. The latest generation of electronic devices is now approaching nanometer scale dimensions, new materials are being introduced into electronics manufacturing at an unprecedented rate, and alternative technologies to mainstream CMOS are evolving. Nanotechnology is widely accepted as a source of potential solutions in securing future progress for information and energy technologies. Semiconductor Nanotechnology features chapters that cover the following areas: atomic scale materials design, bio- and molecular electronics, high frequency electronics, fabrication of nanodevices, magnetic materials and spintronics, materials and processes for integrated and subwave optoelectronics, nanoCMOS, new materials for FETs and other devices, nanoelectronics system architecture, nano optics and lasers, non-silicon materials and devices, chemical and biosensors, quantum effects in devices, nano science and technology applications in the development of novel solar energy devices, and fuel cells and batteries.

Hybrid Perovskite Composite Materials

Hybrid Perovskite Composite Materials
Author : Imran Khan,Anish Khan,Mohammad Mujahid Ali Khan,Shakeel Khan,Francis Verpoort,Arshad Umar
Publisher : Woodhead Publishing
Release Date : 2020-10-27
Category : Technology & Engineering
Total pages :456
GET BOOK

Hybrid Composite Perovskite Materials: Design to Applications discusses the manufacturing, design and characterization of organic-inorganic perovskite composite materials. The book goes beyond the basics of characterization and discusses physical properties, surface morphology and environmental stability. Users will find extensive examples of real-world products that are suitable for the needs of the market. Following a logical order, the book begins with mathematical background and then covers innovative approaches to physical modeling, analysis and design techniques. Numerous examples illustrate the proposed methods and results, making this book a sound resource on the modern research application of perovskite composites with real commercial value. Discusses the composition of perovskite materials and their properties, manufacturing and environmental stability Includes both fundamentals and state-of-the-art developments Features the main types of applications, including solar cells, photovoltaics, sensors and optoelectronic devices

Characterization Techniques for Perovskite Solar Cell Materials

Characterization Techniques for Perovskite Solar Cell Materials
Author : Meysam Pazoki,Anders Hagfeldt,Tomas Edvinsson
Publisher : Elsevier
Release Date : 2019-11-14
Category : Technology & Engineering
Total pages :276
GET BOOK

Characterization Techniques for Perovskite Solar Cell Materials: Characterization of Recently Emerged Perovskite Solar Cell Materials to Provide an Understanding of the Fundamental Physics on the Nano Scale and Optimize the Operation of the Device Towards Stable and Low-Cost Photovoltaic Technology explores the characterization of nanocrystals of the perovskite film, related interfaces, and the overall impacts of these properties on device efficiency. Included is a collection of both main and research techniques for perovskite solar cells. For the first time, readers will have a complete reference of different characterization techniques, all housed in a work written by highly experienced experts. Explores various characterization techniques for perovskite solar cells and discusses both their strengths and weaknesses Discusses material synthesis and device fabrication of perovskite solar cells Includes a comparison throughout the work on how to distinguish one perovskite solar cell from another

Lead Halide Perovskite Solar Cells

Lead Halide Perovskite Solar Cells
Author : Fisher, D.J.
Publisher : Materials Research Forum LLC
Release Date : 2020-06-06
Category : Technology & Engineering
Total pages :130
GET BOOK

Lead halide perovskite materials have a huge potential in solar cell technology. They offer the combined advantages of low-cost preparation and high power-conversion efficiency. The present review focusses on the following topics: Power Conversion Efficiency; Electron Transport, Hole Transport and Interface Layers; Material Preparation; Cesium-Doped Lead-Halide Perovskites; Formamidinium-Doped Lead-Halide Perovskites; Methylammonium Lead-Halide Perovskites; Hysteresis, Stability and Toxicity Problems. The book references 334 original resources and includes their direct web link for in-depth reading. Keywords: Solar Cells, Lead Halide Perovskite Materials, Cesium-Doped Lead-Halide Perovskites, Formamidinium-Doped Lead-Halide Perovskites, Methylammonium Lead-Halide Perovskites, Electron-Transport Layer, Hole-Transport Layer, Interface Layers, Hysteresis Problem, Stability Problem, Toxicity Problem.

Perovskite Solar Cells: Principle, Materials And Devices

Perovskite Solar Cells: Principle, Materials And Devices
Author : Diau Eric Wei-guang,Chen Peter Chao-yu
Publisher : World Scientific
Release Date : 2017-09-04
Category : Science
Total pages :244
GET BOOK

Energy and climate change are two of the most critical issues nowadays. These two topics are also correlated to each other. Fossil fuels are the main energy supplies that have been used in modern history since the industrial revolution. The impact of CO2 emission has been a major concern for its effect on global warming and other consequences. In addition, fossil fuels are not unlimited. Due to the increasing demands for energy supplies, alternative renewable, sustainable, environmentally friendly energy resources are desirable. Solar energy is an unlimited, clean, and renewable energy source, which can be considered to replace the energy supply of fossil fuel. The silicon solar cell is one of the dominant photovoltaic technologies currently, which converting sunlight directly into electric power with around 20% efficiency. This technique was been widely used in mainstream solar energy applications for decades, though the relatively energy-demanding production process remained with challenges to be resolved. Recently, emerging photovoltaic technologies such as organometal halide hybrid perovskite solar cell has attracted tremendous attention due to their promising power conversion efficiencies (over 22%) and ease of fabrication. Their progress roadmap is unprecedented in photovoltaic history from the material development and efficiency advancement perspective. Beyond the rapid progress achieved in the last few years, it is expected that this novel technology would make an impact on the future solar cell market providing long-term stability and Pb content issues are addressed. These challenges rely on a better understanding of materials and device function principles. The scope of this book is to provide a collection on the recent investigations from fundamental process, materials development to device optimization for perovskite solar cells. Contents: Additive-Assisted Controllable Growth of Perovskites (Yixin Zhao and Kai Zhu)Control of Film Morphology for High Performance Perovskite Solar Cells (Cheng-Min Tsai, Hau-Shiang Shiu, Hui-Ping Wu and Eric Wei-Guang Diau)Sensitization and Functions of Porous Titanium Dioxide Electrodes in Dye-Sensitized Solar Cells and Organolead Halide Perovskite Solar Cells (Seigo Ito)P-Type and Inorganic Hole Transporting Materials for Perovskite Solar Cells (Ming-Hsien Li, Yu-Hsien Chiang, Po-Shen Shen, Sean Sung-Yen Juang and Peter Chao-Yu Chen)Hole Conductor Free Organometal Halide Perovskite Solar Cells: Properties and Different Architectures (Sigalit Aharon and Lioz Etgar)Stability Issues of Inorganic/Organic Hybrid Lead Perovskite Solar Cells (Dan Li and Mingkui Wang)Time-Resolved Photoconductivity Measurements on Organometal Halide Perovskites (Eline M Hutter, Tom J Savenije and Carlito S Ponseca Jr) Readership: Graduate students and researchers in chemistry, materials science and photovoltaics. Keywords: Perovskite Solar Cells;Hole Transporting Materials;Stability;THz SpectroscopyReview:0

Light-Emitting Electrochemical Cells

Light-Emitting Electrochemical Cells
Author : Rubén D. Costa
Publisher : Springer
Release Date : 2017-07-31
Category : Technology & Engineering
Total pages :371
GET BOOK

This book presents the recent achievements towards the next generation of Light-emitting electrochemical cells (LEC). Its first part focus on the definition, history and mechanism of LEC, going then to concepts and challenges and, finally, giving the reader examples of current application of new electroluminescent materials. The chapters are written by different international groups working on LEC.

Perovskite Solar Cells

Perovskite Solar Cells
Author : Kunwu Fu,Anita Wing Ho-Baillie,Hemant Kumar Mulmudi,Pham Thi Thu Trang
Publisher : CRC Press
Release Date : 2019-03-19
Category : Science
Total pages :316
GET BOOK

The increasing use of metal halide perovskites as light harvesters has stunned the photovoltaic community. The book, Perovskite Solar Cells: Technology and Practices, covers the basics and provides up-to-date research in the field of perovskite photovoltaics—a fast trending branch of the thin film photovoltaic generation. This comprehensive handbook provides a broad and overall picture of perovskite solar cells (PSCs), starting with the history of development and revolution of PSCs. The authors then delve into electron-transporting materials, hole-transporting materials, and lead-free alternatives. An important chapter on tandem solar cells is also included. The chapters discuss how different layers in PSCs are fabricated and function and how their roles are as important as the perovskite layer itself. It explores what has been done and what can probably be done to further improve the performance of this device.

Perovskite Materials

Perovskite Materials
Author : Likun Pan,Guang Zhu
Publisher : BoD – Books on Demand
Release Date : 2016-02-03
Category : Technology & Engineering
Total pages :650
GET BOOK

The book summarizes the current state of the know-how in the field of perovskite materials: synthesis, characterization, properties, and applications. Most chapters include a review on the actual knowledge and cutting-edge research results. Thus, this book is an essential source of reference for scientists with research fields in energy, physics, chemistry and materials. It is also a suitable reading material for graduate students.

Perovskite Photovoltaics

Perovskite Photovoltaics
Author : Aparna Thankappan,Sabu Thomas
Publisher : Academic Press
Release Date : 2018-06-29
Category : Technology & Engineering
Total pages :518
GET BOOK

Perovskite Photovoltaics: Basic to Advanced Concepts and Implementation examines the emergence of perovskite photovoltaics, associated challenges and opportunities, and how to achieve broader development. Consolidating developments in perovskite photovoltaics, including recent progress solar cells, this text also highlights advances and the research necessary for sustaining energy. Addressing different photovoltaics fields with tailored content for what makes perovskite solar cells suitable, and including commercialization examples of large-scale perovskite solar technology. The book also contains a detailed analysis of the implementation and economic viability of perovskite solar cells, highlighting what photovoltaic devices need to be generated by low cost, non-toxic, earth abundant materials using environmentally scalable processes. This book is a valuable resource engineers, scientists and researchers, and all those who wish to broaden their knowledge on flexible perovskite solar cells. Includes contributions by leading solar cell academics, industrialists, researchers and institutions across the globe Addresses different photovoltaics fields with tailored content for what makes perovskite solar cells different Provides commercialization examples of large-scale perovskite solar technology, giving users detailed analysis on the implementation, technical challenges and economic viability of perovskite solar cells

Organic-Inorganic Halide Perovskite Photovoltaics

Organic-Inorganic Halide Perovskite Photovoltaics
Author : Nam-Gyu Park,Michael Grätzel,Tsutomu Miyasaka
Publisher : Springer
Release Date : 2016-07-25
Category : Science
Total pages :366
GET BOOK

This book covers fundamentals of organometal perovskite materials and their photovoltaics, including materials preparation and device fabrications. Special emphasis is given to halide perovskites. The opto-electronic properties of perovskite materials and recent progress in perovskite solar cells are described. In addition, comments on the issues to current and future challenges are mentioned.

Nanostructured Solar Cells

Nanostructured Solar Cells
Author : Narottam Das
Publisher : BoD – Books on Demand
Release Date : 2017-02-22
Category : Technology & Engineering
Total pages :314
GET BOOK

Nanostructured solar cells are very important in renewable energy sector as well as in environmental aspects, because it is environment friendly. The nano-grating structures (such as triangular or conical shaped) have a gradual change in refractive index which acts as a multilayer antireflective coating that is leading to reduced light reflection losses over broadband ranges of wavelength and angle of incidence. There are different types of losses in solar cells that always reduce the conversion efficiency, but the light reflection loss is the most important factor that decreases the conversion efficiency of solar cells significantly. The antireflective coating is an optical coating which is applied to the surface of lenses or any optical devices to reduce the light reflection losses. This coating assists for the light trapping capturing capacity or improves the efficiency of optical devices, such as lenses or solar cells. Hence, the multilayer antireflective coatings can reduce the light reflection losses and increases the conversion efficiency of nanostructured solar cells.

Excitonic Processes in Solids

Excitonic Processes in Solids
Author : Masayasu Ueta,Hiroshi Kanzaki,Koichi Kobayashi,Yutaka Toyozawa,Eiichi Hanamura
Publisher : Springer Science & Business Media
Release Date : 2012-12-06
Category : Science
Total pages :530
GET BOOK

An exciton is an electronic excitation wave consisting of an electron-hole pair which propagates in a nonmetallic solid. Since the pioneering research of Fren kel, Wannier and the Pohl group in the 1930s, a large number of experimental and theoretical studies have been made. Due to these investigations the exciton is now a well-established concept and the electronic structure has been clarified in great detail. The next subjects for investigation are, naturally, dynamical processes of excitons such as excitation, relaxation, annihilation and molecule formation and, in fact, many interesting phenomena have been disclosed by recent works. These excitonic processes have been recognized to be quite important in solid-state physics because they involve a number of basic interactions between excitons and other elementary excitations. It is the aim of this quasi monograph to describe these excitonic processes from both theoretical and experimental points of view. we take a few To discuss and illustrate the excitonic processes in solids, important and well-investigated insulating crystals as playgrounds for excitons on which they play in a manner characteristic of each material. The selection of the materials is made in such a way that they possess some unique properties of excitonic processes and are adequate to cover important interactions in which excitons are involved. In each material, excitonic processes are described in detail from the experimental side in order to show the whole story of excitons in a particular material.

Luminescence Spectroscopy of Semiconductors

Luminescence Spectroscopy of Semiconductors
Author : Ivan Pelant,Jan Valenta
Publisher : OUP Oxford
Release Date : 2012-02-02
Category : Science
Total pages :560
GET BOOK

This book reviews up-to-date ideas of how the luminescence radiation in semiconductors originates and how to analyze it experimentally. The book fills a gap between general textbooks on optical properties of solids and specialized monographs on luminescence. It is unique in its coherent treatment of the phenomenon of luminescence from the very introductory definitions, from light emission in bulk crystalline and amorphous materials to the advanced chapters that deal with semiconductor nano objects, including spectroscopy of individual nanocrystals. The theory of radiative recombination channels in semiconductors is considered on a level of intuitive physical understanding rather than rigorous quantum mechanical treatment. The book is based on teaching and written in the style of a graduate text with plenty of tutorial material, illustrations, and problem sets at chapter ends. It is designed predominantly for students in physics, optics, optoelectronics and materials science.

Emerging Solar Energy Materials

Emerging Solar Energy Materials
Author : Sadia Ameen,M. Shaheer Akhtar,Hyung-Shik Shin
Publisher : BoD – Books on Demand
Release Date : 2018-08-01
Category : Technology & Engineering
Total pages :246
GET BOOK

This book provides the fundamental understanding of the functioning of solar cellsand the materials for the effective utilization of energy resources. The main objective of writing this book is to create a comprehensive and easy-to-understand source of information on the advances in the rapidly growing research on solar cells. Emerging Solar Energy Materials comprises 12 chapters written by the experts in the solar cell field and is organized with the intention to provide a big picture of the latest progress in the solar cell field and at the same time give an in-depth discussion on fundamentals of solar cells for interested audiences. In this book, each part opens with a new author's essay highlighting their work for contribution toward solar energy. Critical, cutting-edge subjects are addressed, including: Photovoltaic device technology and energy applications; Functional solar energy materials; New concept in solar energy; Perovskite solar cells; Dye-sensitized solar cells; Organic solar cells; Thin-film solar cells. The book is written for a large and broad readership including researchers and university graduate students from diverse backgrounds such as chemistry, physics, materials science, and photovoltaic device technology. The book includes enough information on the basics to be used as a textbook undergraduate coursework in engineering and the sciences.