December 5, 2020

Download Ebook Free General Continuum Mechanics And Constitutive Modeling

The Mechanics of Constitutive Modeling

The Mechanics of Constitutive Modeling
Author : Niels Saabye Ottosen,Matti Ristinmaa
Publisher : Elsevier
Release Date : 2005-09-28
Category : Science
Total pages :700
GET BOOK

Constitutive modelling is the mathematical description of how materials respond to various loadings. This is the most intensely researched field within solid mechanics because of its complexity and the importance of accurate constitutive models for practical engineering problems. Topics covered include: Elasticity - Plasticity theory - Creep theory - The nonlinear finite element method - Solution of nonlinear equilibrium equations - Integration of elastoplastic constitutive equations - The thermodynamic framework for constitutive modelling – Thermoplasticity - Uniqueness and discontinuous bifurcations • More comprehensive in scope than competitive titles, with detailed discussion of thermodynamics and numerical methods. • Offers appropriate strategies for numerical solution, illustrated by discussion of specific models. • Demonstrates each topic in a complete and self-contained framework, with extensive referencing.

Continuum Mechanics

Continuum Mechanics
Author : Franco M. Capaldi
Publisher : Cambridge University Press
Release Date : 2012-06-18
Category : Science
Total pages :343
GET BOOK

Designed for continuum mechanics courses and features both the theoretical framework and numerical methods required to model continuous material behaviour.

Continuum Mechanics Modeling of Material Behavior

Continuum Mechanics Modeling of Material Behavior
Author : Martin H. Sadd
Publisher : Academic Press
Release Date : 2018-03-31
Category : Technology & Engineering
Total pages :432
GET BOOK

Continuum Mechanics Modeling of Material Behavior offers a uniquely comprehensive introduction to topics like RVE theory, fabric tensor models, micropolar elasticity, elasticity with voids, nonlocal higher gradient elasticity and damage mechanics. Contemporary continuum mechanics research has been moving into areas of complex material microstructural behavior. Graduate students who are expected to do this type of research need a fundamental background beyond classical continuum theories. The book begins with several chapters that carefully and rigorously present mathematical preliminaries; kinematics of motion and deformation; force and stress measures; and mass, momentum and energy balance principles. The book then moves beyond other books by dedicating the last chapter to constitutive equation development, exploring a wide collection of constitutive relations and developing the corresponding material model formulations. Such material behavior models include classical linear theories of elasticity, fluid mechanics, viscoelasticity and plasticity, as well as linear and nonlinear theories of solids and fluids, including finite elasticity, nonlinear/non-Newtonian viscous fluids, and nonlinear viscoelastic materials. Finally, several relatively new continuum theories based on incorporation of material microstructure are presented including: fabric tensor theories, micropolar elasticity, elasticity with voids, nonlocal higher gradient elasticity and damage mechanics. Offers a thorough, concise and organized presentation of continuum mechanics formulation Covers numerous applications in areas of contemporary continuum mechanics modeling, including micromechanical and multi-scale problems Integration and use of MATLAB software gives students more tools to solve, evaluate and plot problems under study Features extensive use of exercises, providing more material for student engagement and instructor presentation

Constitutive Modelling of Solid Continua

Constitutive Modelling of Solid Continua
Author : José Merodio,Raymond Ogden
Publisher : Springer Nature
Release Date : 2019-11-14
Category : Science
Total pages :389
GET BOOK

This volume consists of a collection of chapters by recognized experts to provide a comprehensive fundamental theoretical continuum treatment of constitutive laws used for modelling the mechanical and coupled-field properties of various types of solid materials. It covers the main types of solid material behaviour, including isotropic and anisotropic nonlinear elasticity, implicit theories, viscoelasticity, plasticity, electro- and magneto-mechanical interactions, growth, damage, thermomechanics, poroelasticity, composites and homogenization. The volume provides a general framework for research in a wide range of applications involving the deformation of solid materials. It will be of considerable benefit to both established and early career researchers concerned with fundamental theory in solid mechanics and its applications by collecting diverse material in a single volume. The readership ranges from beginning graduate students to senior researchers in academia and industry.

Computational Continuum Mechanics

Computational Continuum Mechanics
Author : Ahmed A. Shabana
Publisher : Cambridge University Press
Release Date : 2011-12-12
Category : Science
Total pages :129
GET BOOK

This second edition presents the theory of continuum mechanics using computational methods. The text covers a broad range of topics including general problems of large rotation and large deformations and the development and limitations of finite element formulations in solving such problems. Dr Shabana introduces theories on motion kinematics, strain, forces and stresses and goes on to discuss linear and nonlinear constitutive equations, including viscoelastic and plastic constitutive models. General nonlinear continuum mechanics theory is used to develop small and large finite element formulations which correctly describe rigid body motion for use in engineering applications. This second edition features a new chapter that focuses on computational geometry and finite element analysis. This book is ideal for graduate and undergraduate students, professionals and researchers who are interested in continuum mechanics.

Continuum Mechanics and Theory of Materials

Continuum Mechanics and Theory of Materials
Author : Peter Haupt
Publisher : Springer Science & Business Media
Release Date : 2013-03-14
Category : Technology & Engineering
Total pages :643
GET BOOK

The new edition includes additional analytical methods in the classical theory of viscoelasticity. This leads to a new theory of finite linear viscoelasticity of incompressible isotropic materials. Anisotropic viscoplasticity is completely reformulated and extended to a general constitutive theory that covers crystal plasticity as a special case.

Mathematical Modeling in Continuum Mechanics

Mathematical Modeling in Continuum Mechanics
Author : Roger Temam,Alain Miranville
Publisher : Cambridge University Press
Release Date : 2000-11-20
Category : Mathematics
Total pages :288
GET BOOK

Provides a rigorous presentation of the underlying mathematics and physics of continuum mechanics.

Continuum Mechanics in Environmental Sciences and Geophysics

Continuum Mechanics in Environmental Sciences and Geophysics
Author : K. Hutter
Publisher : Springer
Release Date : 2014-05-04
Category : Science
Total pages :522
GET BOOK

Modern continuum mechanics is the topic of this book. After its introduction it will be applied to a few typical systems arising in the environmental sciences and in geophysics. In large lake/ocean dynamics peculiar effects of the rotation of the Earth will be analyzed in linear/nonlinear processes of a homogenous and inhomogenous water body. Strong thermomechanical coupling paired with nonlinear rheology affects the flow of large ice sheets (such as Antarctica and Greenland) and ice shelves. Its response to the climatic forcing in an environmental of greenhouse warming may significantly affect the life of future generations. The mechanical behavior of granular materials under quasistatic loadings requires non-classical mixture concepts and encounters generally complicated elastic-plastic-type constitutive behavior. Creeping flow of soils, consolidation processes and ground water flow are described by such theories. Rapid shearing flow of granular materials lead to constitutive relations for the stresses which incorporate rate independent behavior of Mohr-Coulomb type together with dispersive stress contributions due to particle collisions. Rockfalls, sturzstroms, snow and ice avalanches, but also debris flow and sea ice drifting can be described with such formulations.

Continuum Mechanics - Volume I

Continuum Mechanics - Volume I
Author : José Merodio,Giuseppe Saccomandi
Publisher : EOLSS Publications
Release Date : 2011-11-30
Category :
Total pages :460
GET BOOK

The main objective of continuum mechanics is to predict the response of a body that is under the action of external and/or internal influences, i.e. to capture and describe different mechanisms associated with the motion of a body that is under the action of loading. A body in continuum mechanics is considered to be matter continuously distributed in space. Hence, no attention is given to the microscopic (atomic) structure of real materials although non-classical generalized theories of continuum mechanics are able to deal with the mesoscopic structure of matter (i.e. defects, cracks, dispersive lengths, ...). Matter occupies space in time and the response of a body in continuum mechanics is restricted to the Newtonian space-time of classical mechanics in this volume. Einstein’s theory of relativity is not considered. In the classical sense, loading is considered as any action that changes the motion of the body. This includes, for instance, a change in temperature or a force applied. By introducing the concept of configurational forces a load may also be considered as a force that drives a change in the material space, for example the opening of a crack. Continuum mechanics refers to field descriptions of phenomena that are usually modeled by partial differential equations and, from a mathematical point of view, require non-standard knowledge of non-simple technicalities. One purpose in this volume has been to present the different subjects in a self-contained way for a general audience. The organization of the volume is as follows. Mathematically, to predict the response of a body it is necessary to formulate boundary value problems governed by balance laws. The theme of the volume, that is an overview of the subject, has been written with this idea in mind for beginners in the topic. Chapter 1 is an introduction to continuum mechanics based on a one-dimensional framework in which, simultaneously, a more detailed organization of the chapters of this volume is given. A one-dimensional approach to continuum mechanics in some aspects maybe misleading since the analysis is oversimplified. Nevertheless, it allows us to introduce the subject through the early basic steps of the continuum analysis for a general audience. Chapters 3, 4 and 5 are devoted to the mathematical setting of continuum analysis: kinematics, balance laws and thermodynamics, respectively. Chapters 6 and 7 are devoted to constitutive equations. Chapters 8 and 9 deal with different issues in the context of linear elastostatics and linear elastodynamics and waves, respectively, for solids. Linear Elasticity is a classical and central theory of continuum mechanics. Chapter 10 deals with fluids while chapter 11 analyzes the coupled theory of thermoelasticity. Chapter 12 deals with nonlinear elasticity and its role in the continuum framework. Chapters 13 and 14 are dedicated to different applications of solid and fluid mechanics, respectively. The rest of the chapters involve some advanced topics. Chapter 15 is dedicated to turbulence, one of the main challenges in fluid mechanics. Chapter 16 deals with electro-magneto active materials (a coupled theory). Chapter 17 deals with specific ideas of soft matter and chapter 18 deals with configurational forces. In chapter 19, constitutive equations are introduced in a general (implicit) form. Well-posedness (existence, time of existence, uniqueness, continuity) of the equations of the mechanics of continua is an important topic which involves sophisticated mathematical machinery. Chapter 20 presents different analyses related to these topics. Continuum Mechanics is an interdisciplinary subject that attracts the attention of engineers, mathematicians, physicists, etc., working in many different disciplines from a purely scientific environment to industrial applications including biology, materials science, engineering, and many other subjects.

Continuum Mechanics and Plasticity

Continuum Mechanics and Plasticity
Author : Han-Chin Wu
Publisher : CRC Press
Release Date : 2004-12-20
Category : Mathematics
Total pages :704
GET BOOK

Tremendous advances in computer technologies and methods have precipitated a great demand for refinements in the constitutive models of plasticity. Such refinements include the development of a model that would account for material anisotropy and produces results that compare well with experimental data. Key to developing such models-and to meeting

Nonlinear Continuum Mechanics of Solids

Nonlinear Continuum Mechanics of Solids
Author : Yavuz Basar,Dieter Weichert
Publisher : Springer Science & Business Media
Release Date : 2013-11-11
Category : Technology & Engineering
Total pages :193
GET BOOK

The aim of the book is the presentation of the fundamental mathematical and physical concepts of continuum mechanics of solids in a unified description so as to bring young researchers rapidly close to their research area. Accordingly, emphasis is given to concepts of permanent interest, and details of minor importance are omitted. The formulation is achieved systematically in absolute tensor notation, which is almost exclusively used in modern literature. This mathematical tool is presented such that study of the book is possible without permanent reference to other works.

Constitutive Modelling of Solid Continua

Constitutive Modelling of Solid Continua
Author : José Merodio,Raymond Ogden
Publisher : Springer Nature
Release Date : 2019-11-14
Category : Science
Total pages :389
GET BOOK

This volume consists of a collection of chapters by recognized experts to provide a comprehensive fundamental theoretical continuum treatment of constitutive laws used for modelling the mechanical and coupled-field properties of various types of solid materials. It covers the main types of solid material behaviour, including isotropic and anisotropic nonlinear elasticity, implicit theories, viscoelasticity, plasticity, electro- and magneto-mechanical interactions, growth, damage, thermomechanics, poroelasticity, composites and homogenization. The volume provides a general framework for research in a wide range of applications involving the deformation of solid materials. It will be of considerable benefit to both established and early career researchers concerned with fundamental theory in solid mechanics and its applications by collecting diverse material in a single volume. The readership ranges from beginning graduate students to senior researchers in academia and industry.

Continuum Mechanics - Volume III

Continuum Mechanics - Volume III
Author : José Merodio,Giuseppe Saccomandi
Publisher : EOLSS Publications
Release Date : 2011-11-30
Category :
Total pages :388
GET BOOK

The main objective of continuum mechanics is to predict the response of a body that is under the action of external and/or internal influences, i.e. to capture and describe different mechanisms associated with the motion of a body that is under the action of loading. A body in continuum mechanics is considered to be matter continuously distributed in space. Hence, no attention is given to the microscopic (atomic) structure of real materials although non-classical generalized theories of continuum mechanics are able to deal with the mesoscopic structure of matter (i.e. defects, cracks, dispersive lengths, ...). Matter occupies space in time and the response of a body in continuum mechanics is restricted to the Newtonian space-time of classical mechanics in this volume. Einstein’s theory of relativity is not considered. In the classical sense, loading is considered as any action that changes the motion of the body. This includes, for instance, a change in temperature or a force applied. By introducing the concept of configurational forces a load may also be considered as a force that drives a change in the material space, for example the opening of a crack. Continuum mechanics refers to field descriptions of phenomena that are usually modeled by partial differential equations and, from a mathematical point of view, require non-standard knowledge of non-simple technicalities. One purpose in this volume has been to present the different subjects in a self-contained way for a general audience. The organization of the volume is as follows. Mathematically, to predict the response of a body it is necessary to formulate boundary value problems governed by balance laws. The theme of the volume, that is an overview of the subject, has been written with this idea in mind for beginners in the topic. Chapter 1 is an introduction to continuum mechanics based on a one-dimensional framework in which, simultaneously, a more detailed organization of the chapters of this volume is given. A one-dimensional approach to continuum mechanics in some aspects maybe misleading since the analysis is oversimplified. Nevertheless, it allows us to introduce the subject through the early basic steps of the continuum analysis for a general audience. Chapters 3, 4 and 5 are devoted to the mathematical setting of continuum analysis: kinematics, balance laws and thermodynamics, respectively. Chapters 6 and 7 are devoted to constitutive equations. Chapters 8 and 9 deal with different issues in the context of linear elastostatics and linear elastodynamics and waves, respectively, for solids. Linear Elasticity is a classical and central theory of continuum mechanics. Chapter 10 deals with fluids while chapter 11 analyzes the coupled theory of thermoelasticity. Chapter 12 deals with nonlinear elasticity and its role in the continuum framework. Chapters 13 and 14 are dedicated to different applications of solid and fluid mechanics, respectively. The rest of the chapters involve some advanced topics. Chapter 15 is dedicated to turbulence, one of the main challenges in fluid mechanics. Chapter 16 deals with electro-magneto active materials (a coupled theory). Chapter 17 deals with specific ideas of soft matter and chapter 18 deals with configurational forces. In chapter 19, constitutive equations are introduced in a general (implicit) form. Well-posedness (existence, time of existence, uniqueness, continuity) of the equations of the mechanics of continua is an important topic which involves sophisticated mathematical machinery. Chapter 20 presents different analyses related to these topics. Continuum Mechanics is an interdisciplinary subject that attracts the attention of engineers, mathematicians, physicists, etc., working in many different disciplines from a purely scientific environment to industrial applications including biology, materials science, engineering, and many other subjects.

Fundamentals of Continuum Mechanics of Soils

Fundamentals of Continuum Mechanics of Soils
Author : Yehuda Klausner
Publisher : Springer Science & Business Media
Release Date : 2012-12-06
Category : Science
Total pages :607
GET BOOK

Fundamentals of Continuum Mechanics of Soils provides a long-needed general scheme for the study of the important yet problematic material of soil. It closes the gap between two disciplines, soil mechanics and con- tinuum mechanics, showing that the familiar concepts of soil mechanics evolve directly from continuum mechanics. It confirms concepts such as pore pressures, cohesion and dependence of the shear stress on consolidation, and rejects the view that continuum mechanics cannot be applied to a material such as soil. The general concepts of continuum mechanics, field equations and constitutive equations are discussed. It is shown how the theory of mixtures evolves from these equations and how, along with energetics and irrevers- ible thermodynamics, it can be applied to soils. The discussion also sheds light on some aspects of mechanics of materials, especially compressible materials. Examples are the introduction of the Hencky measure of strain, the requirement of dual constitutive equations, and the dependence of the spent internal energy on the stored internal energy. Researchers in engineering mechanics and material sciences may find that the results of experiments on soils can be generalized and extended to other materials. The book is a reference text for students familiar with the fundamentals of mechanics, for scholars of soil engineering, and for soil scientists. It is also suitable as an advanced undergraduate course in soil mechanics.

Continuum Mechanics - Volume II

Continuum Mechanics - Volume II
Author : José Merodio,Giuseppe Saccomandi
Publisher : EOLSS Publications
Release Date : 2011-11-30
Category :
Total pages :446
GET BOOK

The main objective of continuum mechanics is to predict the response of a body that is under the action of external and/or internal influences, i.e. to capture and describe different mechanisms associated with the motion of a body that is under the action of loading. A body in continuum mechanics is considered to be matter continuously distributed in space. Hence, no attention is given to the microscopic (atomic) structure of real materials although non-classical generalized theories of continuum mechanics are able to deal with the mesoscopic structure of matter (i.e. defects, cracks, dispersive lengths, ...). Matter occupies space in time and the response of a body in continuum mechanics is restricted to the Newtonian space-time of classical mechanics in this volume. Einstein’s theory of relativity is not considered. In the classical sense, loading is considered as any action that changes the motion of the body. This includes, for instance, a change in temperature or a force applied. By introducing the concept of configurational forces a load may also be considered as a force that drives a change in the material space, for example the opening of a crack. Continuum mechanics refers to field descriptions of phenomena that are usually modeled by partial differential equations and, from a mathematical point of view, require non-standard knowledge of non-simple technicalities. One purpose in this volume has been to present the different subjects in a self-contained way for a general audience. The organization of the volume is as follows. Mathematically, to predict the response of a body it is necessary to formulate boundary value problems governed by balance laws. The theme of the volume, that is an overview of the subject, has been written with this idea in mind for beginners in the topic. Chapter 1 is an introduction to continuum mechanics based on a one-dimensional framework in which, simultaneously, a more detailed organization of the chapters of this volume is given. A one-dimensional approach to continuum mechanics in some aspects maybe misleading since the analysis is oversimplified. Nevertheless, it allows us to introduce the subject through the early basic steps of the continuum analysis for a general audience. Chapters 3, 4 and 5 are devoted to the mathematical setting of continuum analysis: kinematics, balance laws and thermodynamics, respectively. Chapters 6 and 7 are devoted to constitutive equations. Chapters 8 and 9 deal with different issues in the context of linear elastostatics and linear elastodynamics and waves, respectively, for solids. Linear Elasticity is a classical and central theory of continuum mechanics. Chapter 10 deals with fluids while chapter 11 analyzes the coupled theory of thermoelasticity. Chapter 12 deals with nonlinear elasticity and its role in the continuum framework. Chapters 13 and 14 are dedicated to different applications of solid and fluid mechanics, respectively. The rest of the chapters involve some advanced topics. Chapter 15 is dedicated to turbulence, one of the main challenges in fluid mechanics. Chapter 16 deals with electro-magneto active materials (a coupled theory). Chapter 17 deals with specific ideas of soft matter and chapter 18 deals with configurational forces. In chapter 19, constitutive equations are introduced in a general (implicit) form. Well-posedness (existence, time of existence, uniqueness, continuity) of the equations of the mechanics of continua is an important topic which involves sophisticated mathematical machinery. Chapter 20 presents different analyses related to these topics. Continuum Mechanics is an interdisciplinary subject that attracts the attention of engineers, mathematicians, physicists, etc., working in many different disciplines from a purely scientific environment to industrial applications including biology, materials science, engineering, and many other subjects.