November 23, 2020

Download Ebook Free Green’s Function And Boundary Elements Of Multifield Materials

Green's Function and Boundary Elements of Multifield Materials

Green's Function and Boundary Elements of Multifield Materials
Author : Qing-Hua Qin
Publisher : Elsevier
Release Date : 2010-07-07
Category : Technology & Engineering
Total pages :266
GET BOOK

Green's Function and Boundary Elements of Multifield Materials contains a comprehensive treatment of multifield materials under coupled thermal, magnetic, electric, and mechanical loads. Its easy-to-understand text clarifies some of the most advanced techniques for deriving Green's function and the related boundary element formulation of magnetoelectroelastic materials: Radon transform, potential function approach, Fourier transform. Our hope in preparing this book is to attract interested readers and researchers to a new field that continues to provide fascinating and technologically important challenges. You will benefit from the authors' thorough coverage of general principles for each topic, followed by detailed mathematical derivation and worked examples as well as tables and figures where appropriate. In-depth explanations of the concept of Green's function Coupled thermo-magneto-electro-elastic analysis Detailed mathematical derivation for Green's functions

Special Topics in the Theory of Piezoelectricity

Special Topics in the Theory of Piezoelectricity
Author : Jiashi Yang
Publisher : Springer Science & Business Media
Release Date : 2010-06-08
Category : Mathematics
Total pages :329
GET BOOK

Piezoelectricity has been a steadily growing field, with recent advances made by researchers from applied physics, acoustics, materials science, and engineering. This collective work presents a comprehensive treatment of selected advanced topics in the subject. The book is written for an intermediate graduate level and is intended for researchers, mechanical engineers, and applied mathematicians interested in the advances and new applications in piezoelectricity.

Methods of Fundamental Solutions in Solid Mechanics

Methods of Fundamental Solutions in Solid Mechanics
Author : Hui Wang,Qing-Hua Qin
Publisher : Elsevier
Release Date : 2019-06-06
Category : Technology & Engineering
Total pages :312
GET BOOK

Methods of Fundamental Solutions in Solid Mechanics presents the fundamentals of continuum mechanics, the foundational concepts of the MFS, and methodologies and applications to various engineering problems. Eight chapters give an overview of meshless methods, the mechanics of solids and structures, the basics of fundamental solutions and radical basis functions, meshless analysis for thin beam bending, thin plate bending, two-dimensional elastic, plane piezoelectric problems, and heat transfer in heterogeneous media. The book presents a working knowledge of the MFS that is aimed at solving real-world engineering problems through an understanding of the physical and mathematical characteristics of the MFS and its applications. Explains foundational concepts for the method of fundamental solutions (MFS) for the advanced numerical analysis of solid mechanics and heat transfer Extends the application of the MFS for use with complex problems Considers the majority of engineering problems, including beam bending, plate bending, elasticity, piezoelectricity and heat transfer Gives detailed solution procedures for engineering problems Offers a practical guide, complete with engineering examples, for the application of the MFS to real-world physical and engineering challenges

Controllability of Dynamic Systems

Controllability of Dynamic Systems
Author : Cambridge Scholars Publisher
Publisher : Cambridge Scholars Publishing
Release Date : 2018-04-03
Category : Science
Total pages :223
GET BOOK

The book is about the possibilities of involvement of the well-known Green’s function method in exact or approximate controllability analysis for dynamic systems. Due to existing extensions of the Green’s function notion to nonlinear systems, the approach developed here is valid for systems with both linear and nonlinear dynamics. The book offers a number of particular examples, covering specific issues that make the controllability analysis sophisticated, such as coordinate dependent characteristics, point sources, unbounded domains, higher dimensions, and specific nonlinearities. It also offers extensive numerical analysis, which reveals both advantages and drawbacks of the approach. As such, the book will be of interest to researchers interested in the theory and practice of control, as well as PhD and Master’s students.

Advanced Mechanics of Piezoelectricity

Advanced Mechanics of Piezoelectricity
Author : Qinghua Qin
Publisher : Springer Science & Business Media
Release Date : 2012-11-29
Category : Technology & Engineering
Total pages :332
GET BOOK

"Advanced Mechanics of Piezoelectricity" presents a comprehensive treatment of piezoelectric materials using linear electroelastic theory, symplectic models, and Hamiltonian systems. It summarizes the current state of practice and presents the most recent research findings in piezoelectricity. It is intended for researchers and graduate students in the fields of applied mechanics, material science and engineering, computational engineering, and aerospace engineering. Dr. Qinghua Qin is a professor at the School of Engineering, Australian National University, Australia.

Green's Functions and Condensed Matter

Green's Functions and Condensed Matter
Author : G. Rickayzen
Publisher : Courier Corporation
Release Date : 2013-06-03
Category : Science
Total pages :368
GET BOOK

Presentation of the basic theoretical formulation of Green's functions, followed by specific applications: transport coefficients of a metal, Coulomb gas, Fermi liquids, electrons and phonons, superconductivity, superfluidity, and magnetism. 1984 edition.

Integral Transform Techniques for Green's Function

Integral Transform Techniques for Green's Function
Author : Kazumi Watanabe
Publisher : Springer Science & Business Media
Release Date : 2013-08-13
Category : Mathematics
Total pages :190
GET BOOK

In this book mathematical techniques for integral transforms are described in detail but concisely. The techniques are applied to the standard partial differential equations, such as the Laplace equation, the wave equation and elasticity equations. The Green's functions for beams, plates and acoustic media are also shown along with their mathematical derivations. Lists of Green's functions are presented for the future use. The Cagniard's-de Hoop method for the double inversion is described in detail, and 2D and 3D elasto-dynamics problems are fully treated.

The Boundary Element Method in Acoustics

The Boundary Element Method in Acoustics
Author : Stephen Kirkup
Publisher : Stephen Kirkup
Release Date : 1998
Category : Acoustical engineering
Total pages :136
GET BOOK

Interfacial Mechanics

Interfacial Mechanics
Author : Jane Wang
Publisher : CRC Press
Release Date : 2019-12-06
Category : Technology & Engineering
Total pages :636
GET BOOK

Understanding the characteristics of material contact and lubrication at tribological interfaces is of great importance to engineering researchers and machine designers. Traditionally, contact and lubrication are separately studied due to technical difficulties, although they often coexist in reality and they are actually on the same physical ground. Fast research advancements in recent years have enabled the development and application of unified models and numerical approaches to simulate contact and lubrication, merging their studies into the domain of Interfacial Mechanics. This book provides updated information based on recent research progresses in related areas, which includes new concepts, theories, methods, and results for contact and lubrication problems involving elastic or inelastic materials, homogeneous or inhomogeneous contacting bodies, using stochastic or deterministic models for dealing with rough surfaces. It also contains unified models and numerical methods for mixed lubrication studies, analyses of interfacial frictional and thermal behaviors, as well as theories for studying the effects of multiple fields on interfacial characteristics. The book intends to reflect the recent trends of research by focusing on numerical simulation and problem solving techniques for practical interfaces of engineered surfaces and materials. This book is written primarily for graduate and senior undergraduate students, engineers, and researchers in the fields of tribology, lubrication, surface engineering, materials science and engineering, and mechanical engineering.

Fundamentals of Finite Element Analysis

Fundamentals of Finite Element Analysis
Author : Ioannis Koutromanos
Publisher : John Wiley & Sons
Release Date : 2018-03-05
Category : Technology & Engineering
Total pages :712
GET BOOK

An introductory textbook covering the fundamentals of linear finite element analysis (FEA) This book constitutes the first volume in a two-volume set that introduces readers to the theoretical foundations and the implementation of the finite element method (FEM). The first volume focuses on the use of the method for linear problems. A general procedure is presented for the finite element analysis (FEA) of a physical problem, where the goal is to specify the values of a field function. First, the strong form of the problem (governing differential equations and boundary conditions) is formulated. Subsequently, a weak form of the governing equations is established. Finally, a finite element approximation is introduced, transforming the weak form into a system of equations where the only unknowns are nodal values of the field function. The procedure is applied to one-dimensional elasticity and heat conduction, multi-dimensional steady-state scalar field problems (heat conduction, chemical diffusion, flow in porous media), multi-dimensional elasticity and structural mechanics (beams/shells), as well as time-dependent (dynamic) scalar field problems, elastodynamics and structural dynamics. Important concepts for finite element computations, such as isoparametric elements for multi-dimensional analysis and Gaussian quadrature for numerical evaluation of integrals, are presented and explained. Practical aspects of FEA and advanced topics, such as reduced integration procedures, mixed finite elements and verification and validation of the FEM are also discussed. Provides detailed derivations of finite element equations for a variety of problems. Incorporates quantitative examples on one-dimensional and multi-dimensional FEA. Provides an overview of multi-dimensional linear elasticity (definition of stress and strain tensors, coordinate transformation rules, stress-strain relation and material symmetry) before presenting the pertinent FEA procedures. Discusses practical and advanced aspects of FEA, such as treatment of constraints, locking, reduced integration, hourglass control, and multi-field (mixed) formulations. Includes chapters on transient (step-by-step) solution schemes for time-dependent scalar field problems and elastodynamics/structural dynamics. Contains a chapter dedicated to verification and validation for the FEM and another chapter dedicated to solution of linear systems of equations and to introductory notions of parallel computing. Includes appendices with a review of matrix algebra and overview of matrix analysis of discrete systems. Accompanied by a website hosting an open-source finite element program for linear elasticity and heat conduction, together with a user tutorial. Fundamentals of Finite Element Analysis: Linear Finite Element Analysis is an ideal text for undergraduate and graduate students in civil, aerospace and mechanical engineering, finite element software vendors, as well as practicing engineers and anybody with an interest in linear finite element analysis.

An Introduction to Computational Micromechanics

An Introduction to Computational Micromechanics
Author : Tarek I. Zohdi,Peter Wriggers
Publisher : Springer Science & Business Media
Release Date : 2008-03-15
Category : Technology & Engineering
Total pages :195
GET BOOK

In this, its second corrected printing, Zohdi and Wriggers’ illuminating text presents a comprehensive introduction to the subject. The authors include in their scope basic homogenization theory, microstructural optimization and multifield analysis of heterogeneous materials. This volume is ideal for researchers and engineers, and can be used in a first-year course for graduate students with an interest in the computational micromechanical analysis of new materials.

Green's Functions and Boundary Element Analysis for Modeling of Mechanical Behavior of Advanced Materials

Green's Functions and Boundary Element Analysis for Modeling of Mechanical Behavior of Advanced Materials
Author : J. R. Berger,V. K. Tewary
Publisher : DIANE Publishing
Release Date : 1998-03
Category :
Total pages :166
GET BOOK

Demonstrates the potential of Green's functions & boundary element methods in solving a broad range of practical materials science problems. Papers include: Accurate Discretization of Integral Operators, Boundary Element Analysis of Bimaterials Using Anisotropic Elastic Green's Functions, Mechanical Properties of Metal-Matrix Composites, Approximate Operators for Boundary Integral Equations in Transient Elastodynamics, Simulation of the Electrochemical Machining Process Using a 2D Fundamental Singular Solution, Elastic Green's Functions for Anisotropic Solids, & more. Charts & tables.

Green's Functions and Finite Elements

Green's Functions and Finite Elements
Author : Friedel Hartmann
Publisher : Springer Science & Business Media
Release Date : 2012-08-01
Category : Technology & Engineering
Total pages :330
GET BOOK

This book elucidates how Finite Element methods look like from the perspective of Green’s functions, and shows new insights into the mathematical theory of Finite Elements. Practically, this new view on Finite Elements enables the reader to better assess solutions of standard programs and to find better model of a given problem. The book systematically introduces the basic concepts how Finite Elements fulfill the strategy of Green’s functions and how approximating of Green’s functions. It discusses in detail the discretization error and shows that are coherent with the strategy of “goal oriented refinement”. The book also gives much attention to the dependencies of FE solutions from the parameter set of the model.

Static Green's Functions in Anisotropic Media

Static Green's Functions in Anisotropic Media
Author : Ernian Pan,Weiqiu Chen
Publisher : Cambridge University Press
Release Date : 2015-04-30
Category : Computers
Total pages :356
GET BOOK

This book presents basic theory on static Green's functions in general anisotropic magnetoelectroelastic media including detailed derivations based on the complex variable method, potential method, and integral transforms. Green's functions corresponding to the reduced cases are also presented including those in anisotropic and transversely isotropic piezoelectric and piezomagnetic media, and in purely anisotropic elastic, transversely isotropic elastic and isotropic elastic media. Problems include those in three-dimensional, (two-dimensional) infinite, half, and biomaterial spaces (planes). While the emphasis is on the Green's functions related to the line and point force, those corresponding to the important line and point dislocation are also provided and discussed. This book provides a comprehensive derivation and collection of the Green's functions in the concerned media, and as such, it is an ideal reference book for researchers and engineers, and a textbook for both students in engineering and applied mathematics.

Symmetric Galerkin Boundary Element Method

Symmetric Galerkin Boundary Element Method
Author : Alok Sutradhar,Glaucio Paulino,Leonard J. Gray
Publisher : Springer Science & Business Media
Release Date : 2008-09-26
Category : Mathematics
Total pages :276
GET BOOK

Symmetric Galerkin Boundary Element Method presents an introduction as well as recent developments of this accurate, powerful, and versatile method. The formulation possesses the attractive feature of producing a symmetric coefficient matrix. In addition, the Galerkin approximation allows standard continuous elements to be used for evaluation of hypersingular integrals. FEATURES • Written in a form suitable for a graduate level textbook as well as a self-learning tutorial in the field. • Covers applications in two-dimensional and three-dimensional problems of potential theory and elasticity. Additional basic topics involve axisymmetry, multi-zone and interface formulations. More advanced topics include fluid flow (wave breaking over a sloping beach), non-homogeneous media, functionally graded materials (FGMs), anisotropic elasticity, error estimation, adaptivity, and fracture mechanics. • Presents integral equations as a basis for the formulation of general symmetric Galerkin boundary element methods and their corresponding numerical implementation. • Designed to convey effective unified procedures for the treatment of singular and hypersingular integrals that naturally arise in the method. Symbolic codes using Maple® for singular-type integrations are provided and discussed in detail. • The user-friendly adaptive computer code BEAN (Boundary Element ANalysis), fully written in Matlab®, is available as a companion to the text. The complete source code, including the graphical user-interface (GUI), can be downloaded from the web site http://www.ghpaulino.com/SGBEM_book. The source code can be used as the basis for building new applications, and should also function as an effective teaching tool. To facilitate the use of BEAN, a video tutorial and a library of practical examples are provided.