February 27, 2021

Download Ebook Free Hybrid Nuclear Energy Systems

Hybrid Nuclear Energy Systems

Hybrid Nuclear Energy Systems
Author : Michael F. Keller
Publisher : Academic Press
Release Date : 2021-01-30
Category : Science
Total pages :322
GET BOOK

Hybrid Nuclear Energy Systems: A Sustainable Solution for the 21st Century provides practical insights on the environmental impact of the hybrid systems discussed, as well as important technical, economic, licensing and safety considerations. This book acts as a guide for the implementation of hybrid energy systems and authoritatively compares the benefits and possible downfalls of each technology. This enables the reader to analyze their own setting or research and evaluate the most economical and effective solution. Energy engineering researchers and professional engineers will benefit from the practical and technical approach of this book. This book will also benefit regulators and economists who will gain a clear understanding of how a hybrid system is not only designed, but also how societies will benefit from a cleaner and more abundant energy source. Provides a comprehensive analysis of hybrid energy systems and their associated benefits and possible shortcomings Provides the latest technical, environmental, economic, safety and regulatory research Ranks key energy production methods against novel hybrid systems to highlight possibilities

Storage and Hybridization of Nuclear Energy

Storage and Hybridization of Nuclear Energy
Author : Hitesh Bindra,Shripad Revankar
Publisher : Academic Press
Release Date : 2018-11-22
Category : Science
Total pages :300
GET BOOK

Storage and Hybridization of Nuclear Energy: Techno-economic Integration of Renewable and Nuclear Energy provides a unique analysis of the storage and hybridization of nuclear and renewable energy. Editor Bindra and his team of expert contributors present various global methodologies to obtain the techno-economic feasibility of the integration of storage or hybrid cycles in nuclear power plants. Aimed at those studying, researching and working in the nuclear engineering field, this book offers nuclear reactor technology vendors, nuclear utilities workers and regulatory commissioners a very unique resource on how to access reliable, flexible and clean energy from variable-generation. Presents a unique view on the technologies and systems available to integrate renewables and nuclear energy Provides insights into the different methodologies and technologies currently available for the storage of energy Includes case studies from well-known experts working on specific integration concepts around the world

Hybrid Energy Systems

Hybrid Energy Systems
Author : Bahman Zohuri
Publisher : Springer
Release Date : 2017-11-25
Category : Science
Total pages :287
GET BOOK

This book discusses innovations in the field of hybrid energy storage systems (HESS) and covers the durability, practicality, cost-effectiveness, and utility of a HESS. It demonstrates how the coupling of two or more energy storage technologies can interact with and support renewable energy power systems. Different structures of stand-alone renewable energy power systems with hybrid energy storage systems such as passive, semi-active, and active hybrid energy storage systems are examined. A detailed review of the state-of-the-art control strategies, such as classical control strategies and intelligent control strategies for renewable energy power systems with hybrid energy storage systems are highlighted. The future trends for combination and control of the two systems are also discussed.

Hybrid Energy System Models

Hybrid Energy System Models
Author : Asmae Berrada,Rachid El Mrabet
Publisher : Academic Press
Release Date : 2020-12-04
Category : Technology & Engineering
Total pages :382
GET BOOK

Hybrid Energy System Models presents a number of techniques to model a large variety of hybrid energy systems in all aspects of sizing, design, operation, economic dispatch, optimization and control. The book's authors present a number of new methods to model hybrid energy systems and several renewable energy systems, including photovoltaic, solar plus wind and hydropower, energy storage, and combined heat and power systems. With critical modeling examples, global case studies and techno-economic modeling integrated in every chapter, this book is essential to understanding the development of affordable energy systems globally, particularly from renewable resources. With a detailed overview and a comparison of hybrid energy systems used in different regions, as well as innovative hybrid energy system designs covered, this book is useful for practicing power and energy engineers needing answers for what factors to consider when modeling a hybrid energy system and what tools are available to model hybrid systems. Combines research on several renewable energy systems, energy storage, and combined heat and power systems into a single informative resource on hybrid energy systems Includes significant global case studies of current and novel modeling techniques for comparison Covers numerical simulations of hybrid systems energy modeling and applications

Nuclear-renewable Hybrid Energy Systems for Decarbonized Energy Production and Cogeneration

Nuclear-renewable Hybrid Energy Systems for Decarbonized Energy Production and Cogeneration
Author : Anonim
Publisher : Unknown
Release Date : 2019
Category : Carbon dioxide mitigation
Total pages :218
GET BOOK

Stand-Alone and Hybrid Wind Energy Systems

Stand-Alone and Hybrid Wind Energy Systems
Author : J K Kaldellis
Publisher : Elsevier
Release Date : 2010-07-27
Category : Technology & Engineering
Total pages :576
GET BOOK

Wind power is fast becoming one of the leading renewable energy sources worldwide, not only from large scale wind farms but also from the increasing penetration of stand-alone and hybrid wind energy systems. These systems are primarily of benefit in small-scale applications, especially where there is no connection to a central electricity network, and where there are limited conventional fuel resources but available renewable energy resources. By applying appropriate planning, systems selection and sizing, including the integration of energy storage devices to mitigate variable energy generation patterns, theses systems can supply secure reliable and economic power to remote locations and distributed micro-grids. Stand-alone and hybrid wind energy systems is a synthesis of the most recent knowledge and experience on wind-based hybrid renewable energy systems, comprehensively covering the scientific, technical and socio-economic issues involved in the application of these systems. Part one presents an overview of the fundamental science and engineering of stand-alone and hybrid wind energy systems and energy storage technology, including design and performance optimisation methods and feasibility assessment for these systems. Part two initially reviews the design, development, operation and optimisation of stand-alone and hybrid wind energy systems – including wind-diesel, wind -photovoltaic (PV), wind-hydrogen, and wind-hydropower energy systems – before moving on to examine applicable energy storage technology, including electro-chemical, flywheel (kinetic) and compressed air energy storage technologies. Finally, Part three assesses the integration of stand-alone and hybrid wind energy systems and energy technology into remote micro-grids and buildings, and their application for desalination systems. With its distinguished editor and international team of contributors, Stand-alone and hybrid wind energy systems is a standard reference for all renewable energy professionals, consultants, researchers and academics from post-graduate level up. Provides an overview of the fundamental science and engineering of stand-alone hybrid and wind energy systems, including design and performance optimisation methods Reviews the development and operation of stand-alone and hybrid wind energy systems Assesses the integration of stand-alone and hybrid wind energy systems and energy storage technology into remote micro-grids and buildings, and their application for desalination systems

Handbook of Small Modular Nuclear Reactors

Handbook of Small Modular Nuclear Reactors
Author : Mario D Carelli,Daniel T Ingersoll
Publisher : Elsevier
Release Date : 2014-09-22
Category : Technology & Engineering
Total pages :536
GET BOOK

Small modular reactors (SMRs) are an advanced, safe type of nuclear reactor technology that are suitable for small and medium sized applications including both power and heat generation. In particular, their use as individual units or in combination to scale-up capacity offer benefits in terms of siting, installation, operation, lifecycle and economics in comparison to the development of larger nuclear plant for centralised electricity power grids. Interest has increased in the research and development of SMRs for both developing countries as well as such additional cogeneration options as industrial/chemical process heat, desalination and district heating, and hydrogen production. This book reviews key issues in their development as well as international R&D in the field. Gives an overview of small modular reactor technology Reviews the design characteristics of integral pressurized water reactors and focuses on reactor core and fuel technologies, key reactor system components, instrumentation and control, human-system interfaces and safety Considers the economics, financing, licensing, construction methods and hybrid energy systems of small modular reactors Describes SMR development activities worldwide, and concludes with a discussion of how SMR deployment can contribute to the growth of developing countries

Energy and Fuel Systems Integration

Energy and Fuel Systems Integration
Author : Yatish T. Shah
Publisher : CRC Press
Release Date : 2015-10-15
Category : Science
Total pages :450
GET BOOK

Energy and Fuel Systems Integration explains how growing energy and fuel demands, paired with the need for environmental preservation, require different sources of energy and fuel to cooperate and integrate with each other rather than simply compete. Providing numerous examples of energy and fuel systems integration success stories, this book: Discusses the use of different mixtures of fuels for combustion, gasification, liquefaction, pyrolysis, and anaerobic digestion processes Describes the use of hybrid nuclear and renewable energy systems for power and heat cogenerations with nonelectrical applications Details the holistic integration of renewable, nuclear, and fossil energy systems by gas, heat, and smart electrical grids Energy and Fuel Systems Integration emphasizes the many advantages of these integrated systems, including sustainability, flexibility for optimization and scale-up, and more efficient use of storage, transportation, and delivery infrastructures.

Nuclear Reactor Technology Development and Utilization

Nuclear Reactor Technology Development and Utilization
Author : Salah Ud-Din Khan,Alexander V. Nakhabov
Publisher : Woodhead Publishing
Release Date : 2020-06-16
Category : Business & Economics
Total pages :512
GET BOOK

Nuclear Reactor Technology Development and Utilization presents the theory and principles of the most common advanced nuclear reactor systems and provides a context for the value and utilization of nuclear power in a variety of applications both inside and outside a traditional nuclear setting. As countries across the globe realize their plans for a sustainable energy future, the need for innovative nuclear reactor design is increasing, and this book will provide a deep understanding of how these technologies can aid in a region’s goal for clean and reliable energy. Dr Khan and Dr Nakhabov, alongside their team of expert contributors, discuss a variety of important topics, including nuclear fuel cycles, plant decommissioning and hybrid energy systems, while considering a variety of diverse uses such as nuclear desalination, hydrogen generation and radioisotope production. Knowledge acquired enables the reader to conduct further research in academia and industry, and apply the latest design, development, integration, safety and economic guidance to their work and research. Combines reactor fundamentals with a contemporary look at evolving trends in the design of advanced reactors and their application to both nuclear and non-nuclear uses Analyses the latest research and uses of hybrid systems which bring together nuclear technology with renewable energy technologies Presents applications, economic factors and an analysis of sustainability factors in one comprehensive resource

Electric Renewable Energy Systems

Electric Renewable Energy Systems
Author : Muhammad H. Rashid
Publisher : Academic Press
Release Date : 2015-11-25
Category : Science
Total pages :450
GET BOOK

This derivative volume stemming from content included in our seminal Power Electronics Handbook takes its chapters related to renewables and establishes them at the core of a new volume dedicated to the increasingly pivotal and as yet under-published intersection of Power Electronics and Alternative Energy. While this re-versioning provides a corollary revenue stream to better leverage our core handbook asset, it does more than simply re-package existing content. Each chapter will be significantly updated and expanded by more than 50%, and all new introductory and summary chapters will be added to contextualize and tie the volume together. Therefore, unlike traditional derivative volumes, we will be able to offer new and updated material to the market and include this largely original content in our ScienceDirect Energy collection. Due to the inherently multi-disciplinary nature of renewables, many engineers come from backgrounds in Physics, Materials, or Chemical Engineering, and therefore do not have experience working in-depth with electronics. As more and more alternative and distributed energy systems require grid hook-ups and on-site storage, a working knowledge of batteries, inverters and other power electronics components becomes requisite. Further, as renewables enjoy broadening commercial implementation, power electronics professionals are interested to learn of the challenges and strategies particular to applications in alternative energy. This book will bring each group up-to-speed with the primary issues of importance at this technological node. This content clarifies the juncture of two key coverage areas for our Energy portfolio: alternative sources and power systems. It serves to bridge the information in our power engineering and renewable energy lists, supporting the growing grid cluster in the former and adding key information on practical implementation to the latter. Provides a thorough overview of the key technologies, methods and challenges for implementing power electronics in alternative energy systems for optimal power generation Includes hard-to-find information on how to apply converters, inverters, batteries, controllers and more for stand-alone and grid-connected systems Covers wind and solar applications, as well as ocean and geothermal energy, hybrid systems and fuel cells

Electric Powertrain

Electric Powertrain
Author : John G. Hayes,G. Abas Goodarzi
Publisher : John Wiley & Sons
Release Date : 2018-02-05
Category : Technology & Engineering
Total pages :560
GET BOOK

The why, what and how of the electric vehicle powertrain Empowers engineering professionals and students with the knowledge and skills required to engineer electric vehicle powertrain architectures, energy storage systems, power electronics converters and electric drives. The modern electric powertrain is relatively new for the automotive industry, and engineers are challenged with designing affordable, efficient and high-performance electric powertrains as the industry undergoes a technological evolution. Co-authored by two electric vehicle (EV) engineers with decades of experience designing and putting into production all of the powertrain technologies presented, this book provides readers with the hands-on knowledge, skills and expertise they need to rise to that challenge. This four-part practical guide provides a comprehensive review of battery, hybrid and fuel cell EV systems and the associated energy sources, power electronics, machines, and drives. The first part of the book begins with a historical overview of electromobility and the related environmental impacts motivating the development of the electric powertrain. Vehicular requirements for electromechanical propulsion are then presented. Battery electric vehicles (BEV), fuel cell electric vehicles (FCEV), and conventional and hybrid electric vehicles (HEV) are then described, contrasted and compared for vehicle propulsion. The second part of the book features in-depth analysis of the electric powertrain traction machines, with a particular focus on the induction machine and the surface- and interior-permanent magnet ac machines. The brushed dc machine is also considered due to its ease of operation and understanding, and its historical place, especially as the traction machine on NASA’s Mars rovers. The third part of the book features the theory and applications for the propulsion, charging, accessory, and auxiliary power electronics converters. Chapters are presented on isolated and non-isolated dc-dc converters, traction inverters, and battery charging. The fourth part presents the introductory and applied electromagnetism required as a foundation throughout the book. • Introduces and holistically integrates the key EV powertrain technologies. • Provides a comprehensive overview of existing and emerging automotive solutions. • Provides experience-based expertise for vehicular and powertrain system and sub-system level study, design, and optimization. • Presents many examples of powertrain technologies from leading manufacturers. • Discusses the dc traction machines of the Mars rovers, the ultimate EVs from NASA. • Investigates the environmental motivating factors and impacts of electromobility. • Presents a structured university teaching stream from introductory undergraduate to postgraduate. • Includes real-world problems and assignments of use to design engineers, researchers, and students alike. • Features a companion website with numerous references, problems, solutions, and practical assignments. • Includes introductory material throughout the book for the general scientific reader. • Contains essential reading for government regulators and policy makers. Electric Powertrain: Energy Systems, Power Electronics and Drives for Hybrid, Electric and Fuel Cell Vehicles is an important professional resource for practitioners and researchers in the battery, hybrid, and fuel cell EV transportation industry. The book is a structured holistic textbook for the teaching of the fundamental theories and applications of energy sources, power electronics, and electric machines and drives to engineering undergraduate and postgraduate students. Textbook Structure and Suggested Teaching Curriculum This is primarily an engineering textbook covering the automotive powertrain, energy storage and energy conversion, power electronics, and electrical machines. A significant additional focus is placed on the engineering design, the energy for transportation, and the related environmental impacts. This textbook is an educational tool for practicing engineers and others, such as transportation policy planners and regulators. The modern automobile is used as the vehicle upon which to base the theory and applications, which makes the book a useful educational reference for our industry colleagues, from chemists to engineers. This material is also written to be of interest to the general reader, who may have little or no interest in the power electronics and machines. Introductory science, mathematics, and an inquiring mind suffice for some chapters. The general reader can read the introduction to each of the chapters and move to the next as soon as the material gets too advanced for him or her. Part I Vehicles and Energy Sources Chapter 1 Electromobility and the Environment Chapter 2 Vehicle Dynamics Chapter 3 Batteries Chapter 4 Fuel Cells Chapter 5 Conventional and Hybrid Powertrains Part II Electrical Machines Chapter 6 Introduction to Traction Machines Chapter 7 The Brushed DC Machine Chapter 8 Induction Machines Chapter 9 Surface-permanent-magnet AC Machines Chapter 10: Interior-permanent-magnet AC Machines Part III Power Electronics Chapter 11 DC-DC Converters Chapter 12 Isolated DC-DC Converters Chapter 13 Traction Drives and Three-phase Inverters Chapter 14 Battery Charging Chapter 15 Control of the Electric Drive Part IV Basics Chapter 16 Introduction to Electromagnetism, Ferromagnetism, and Electromechanical Energy Conversion The first third of the book (Chapters 1 to 6), plus parts of Chapters 14 and 16, can be taught to the general science or engineering student in the second or third year. It covers the introductory automotive material using basic concepts from mechanical, electrical, environmental, and electrochemical engineering. Chapter 14 on electrical charging and Chapter 16 on electromagnetism can also be used as a general introduction to electrical engineering. The basics of electromagnetism, ferromagnetism and electromechanical energy conversion (Chapter 16) and dc machines (Chapter 7) can be taught to second year (sophomore) engineering students who have completed introductory electrical circuits and physics. The third year (junior) students typically have covered ac circuit analysis, and so they can cover ac machines, such as the induction machine (Chapter 8) and the surface permanent-magnet ac machine (Chapter 9). As the students typically have studied control theory, they can investigate the control of the speed and torque loops of the motor drive (Chapter 15). Power electronics, featuring non-isolated buck and boost converters (Chapter 11), can also be introduced in the third year. The final-year (senior) students can then go on to cover the more advanced technologies of the interior-permanent-magnet ac machine (Chapter 10). Isolated power converters (Chapter 12), such as the full-bridge and resonant converters, inverters (Chapter 13), and power-factor-corrected battery chargers (Chapter 14), are covered in the power electronics section. This material can also be covered at the introductory postgraduate level. Various homework, simulation, and research exercises are presented throughout the textbook. The reader is encouraged to attempt these exercises as part of the learning experience. Instructors are encouraged to contact the author, John Hayes, direct to discuss course content or structure.

Alternative Energy Systems and Applications

Alternative Energy Systems and Applications
Author : B. K. Hodge
Publisher : John Wiley & Sons
Release Date : 2017-05-08
Category : Science
Total pages :460
GET BOOK

The comprehensive guide to engineering alternative and renewable energy systems and applications—updated for the latest trends and technologies This book was designed tohelp engineers develop new solutions for the current energy economy. To that end it provides technical discussions, along with numerous real-world examples of virtually all existing alternative energy sources, applications, systems and system components. All chapters focus on first-order engineering calculations, and consider alternative uses of existing and renewable energy resources. Just as important, the author describes how to apply these concepts to the development of new energy solutions. Since the publication of the critically acclaimed first edition of this book, the alternative, renewable and sustainable energy industries have witnessed significant evolution and growth. Hydraulic fracturing, fossil fuel reserve increases, the increasing popularity of hybrid and all-electric vehicles, and the decreasing cost of solar power already have had a significant impact on energy usage patterns worldwide. Updated and revised to reflect those and other key developments, this new edition features expanded coverage of topics covered in the first edition, as well as entirely new chapters on hydraulic fracturing and fossil fuels, hybrid and all-electric vehicles, and more. Begins with a fascinating look at the changing face of global energy economy Features chapters devoted to virtually all sources of alternative energy and energy systems Offers technical discussions of hydropower, wind, passive solar and solar-thermal, photovoltaics, fuel cells, CHP systems, geothermal, ocean energy, biomass, and nuclear Contains updated chapter review questions, homework problems, and a thoroughly revised solutions manual, available on the companion website While Alternative Energy Systems and Applications, Second Edition is an ideal textbook/reference for advanced undergraduate and graduate level engineering courses in energy-related subjects, it is also an indispensable professional resource for engineers and technicians working in areas related to the development of alternative/renewable energy systems.

Advanced Power Generation Systems

Advanced Power Generation Systems
Author : Ibrahim Dincer,Calin Zamfirescu
Publisher : Academic Press
Release Date : 2014-07-15
Category : Technology & Engineering
Total pages :656
GET BOOK

Advanced Power Generation Systems examines the full range of advanced multiple output thermodynamic cycles that can enable more sustainable and efficient power production from traditional methods, as well as driving the significant gains available from renewable sources. These advanced cycles can harness the by-products of one power generation effort, such as electricity production, to simultaneously create additional energy outputs, such as heat or refrigeration. Gas turbine-based, and industrial waste heat recovery-based combined, cogeneration, and trigeneration cycles are considered in depth, along with Syngas combustion engines, hybrid SOFC/gas turbine engines, and other thermodynamically efficient and environmentally conscious generation technologies. The uses of solar power, biomass, hydrogen, and fuel cells in advanced power generation are considered, within both hybrid and dedicated systems. The detailed energy and exergy analysis of each type of system provided by globally recognized author Dr. Ibrahim Dincer will inform effective and efficient design choices, while emphasizing the pivotal role of new methodologies and models for performance assessment of existing systems. This unique resource gathers information from thermodynamics, fluid mechanics, heat transfer, and energy system design to provide a single-source guide to solving practical power engineering problems. The only complete source of info on the whole array of multiple output thermodynamic cycles, covering all the design options for environmentally-conscious combined production of electric power, heat, and refrigeration Offers crucial instruction on realizing more efficiency in traditional power generation systems, and on implementing renewable technologies, including solar, hydrogen, fuel cells, and biomass Each cycle description clarified through schematic diagrams, and linked to sustainable development scenarios through detailed energy, exergy, and efficiency analyses Case studies and examples demonstrate how novel systems and performance assessment methods function in practice

Greener Energy Systems

Greener Energy Systems
Author : Eric Jeffs
Publisher : CRC Press
Release Date : 2018-09-03
Category : Business & Economics
Total pages :240
GET BOOK

Recent years have seen acceleration in the development of cleaner energy systems. In Europe and North America, many old coal-fired power plants will be shut down in the next few years and will likely be replaced by combined cycle plants with higher-efficiency gas turbines that can start up and load quickly. With the revival of nuclear energy, designers are creating smaller nuclear reactors of a simpler integrated design that could expand the application of clean, emission-free energy to industry. And a number of manufacturers now offer hybrid cars with an electric motor and a gasoline engine to charge the batteries on the move. This would seem to be the way forward in reducing transport emissions, until countries develop stronger electricity supply systems to cope with millions of electric cars being charged daily. Greener Energy Systems: Energy Production Technologies with Minimum Environmental Impact tackles the question of how to generate enough electricity, efficiently and with minimum environmental impact, to meet future energy needs across the world. Supplemented with extensive figures and color photographs, this book: Traces the development of electricity supply Explains energy production risks and how major accidents have influenced development Discusses the combined cycle, the preferred system for power capacity expansion in much of the world Looks at combined heat and power Addresses whether coal can continue to be a fuel for power generation Examines nuclear power generation Asks why shipping has not followed some of the world's navies into nuclear propulsion Considers how to electrify more transport systems Reviews the current state of renewable systems, particularly hydro and solar The book defines the key elements of greener energy systems, noting that they must be highly efficient, with rapid start up and loading; produce minimum emissions; and use simpler technology. The author has more than forty years of experience as an international journalist reporting on power-generation technologies and energy policies around the world. He concludes that there is no place for coal and that combined cycle, hydro, solar, and biomass must complement nuclear energy, which must serve more applications than just generating electricity.

Nuclear Energy Encyclopedia

Nuclear Energy Encyclopedia
Author : Thomas B. Kingery
Publisher : John Wiley & Sons
Release Date : 2011-08-10
Category : Technology & Engineering
Total pages :448
GET BOOK

The A-to-Z reference resource for nuclear energy information A significant milestone in the history of nuclear technology, Nuclear Energy Encyclopedia: Science, Technology, and Applications is a comprehensive and authoritative reference guide written by a committee of the world's leading energy experts. The encyclopedia is packed with cutting-edge information about where nuclear energy science and technology came from, where they are today, and what the future may hold for this vital technology. Filled with figures, graphs, diagrams, formulas, and photographs, which accompany the short, easily digestible entries, the book is an accessible reference work for anyone with an interest in nuclear energy, and includes coverage of safety and environmental issues that are particularly topical in light of the Fukushima Daiichi incident. A definitive work on all aspects of the world's energy supply, the Nuclear Energy Encyclopedia brings together decades of knowledge about energy sources and technologies ranging from coal and oil, to biofuels and wind, and ultimately nuclear power.