January 18, 2021

Download Ebook Free Hyperspectral Imaging

Hyperspectral Imaging

Hyperspectral Imaging
Author : Anonim
Publisher : Elsevier
Release Date : 2019-09-29
Category : Science
Total pages :800
GET BOOK

Hyperspectral Imaging, Volume 32, presents a comprehensive exploration of the different analytical methodologies applied on hyperspectral imaging and a state-of-the-art analysis of applications in different scientific and industrial areas. This book presents, for the first time, a comprehensive collection of the main multivariate algorithms used for hyperspectral image analysis in different fields of application. The benefits, drawbacks and suitability of each are fully discussed, along with examples of their application. Users will find state-of-the art information on the machinery for hyperspectral image acquisition, along with a critical assessment of the usage of hyperspectral imaging in diverse scientific fields. Provides a comprehensive roadmap of hyperspectral image analysis, with benefits and considerations for each method discussed Covers state-of-the-art applications in different scientific fields Discusses the implementation of hyperspectral devices in different environments

Hyperspectral Imaging

Hyperspectral Imaging
Author : Chein-I Chang
Publisher : Springer Science & Business Media
Release Date : 2013-12-11
Category : Computers
Total pages :370
GET BOOK

Hyperspectral Imaging: Techniques for Spectral Detection and Classification is an outgrowth of the research conducted over the years in the Remote Sensing Signal and Image Processing Laboratory (RSSIPL) at the University of Maryland, Baltimore County. It explores applications of statistical signal processing to hyperspectral imaging and further develops non-literal (spectral) techniques for subpixel detection and mixed pixel classification. This text is the first of its kind on the topic and can be considered a recipe book offering various techniques for hyperspectral data exploitation. In particular, some known techniques, such as OSP (Orthogonal Subspace Projection) and CEM (Constrained Energy Minimization) that were previously developed in the RSSIPL, are discussed in great detail. This book is self-contained and can serve as a valuable and useful reference for researchers in academia and practitioners in government and industry.

The Future of Hyperspectral Imaging

The Future of Hyperspectral Imaging
Author : Stefano Selci
Publisher : MDPI
Release Date : 2019-11-20
Category : Science
Total pages :220
GET BOOK

This book includes some very recent applications and the newest emerging trends of hyper-spectral imaging (HSI). HSI is a very recent and strange beast, a sort of a melting pot of previous techniques and scientific interests, merging and concentrating the efforts of physicists, chemists, botanists, biologists, and physicians, to mention just a few, as well as experts in data crunching and statistical elaboration. For almost a century, scientific observation, from looking to planets and stars down to our own cells and below, could be divided into two main categories: analyzing objects on the basis of their physical dimension (recording size, position, weight, etc. and their variations) or on how the object emits, reflects, or absorbs part of the electromagnetic spectrum, i.e., spectroscopy. While the two aspects have been obviously entangled, instruments and skills have always been clearly distinct from each other. With HSI now available, this is no longer the case. This instrument can return specimen dimensionalities and spectroscopic properties to any single pixel of your specimen, in a single set of data. HSI modality is ubiquitous and scale-invariant enough to be used to mark terrestrial resources on the basis of a land map obtained from satellite observation (actually, the oldest application of this type) or to understand if the cell you are looking at is cancerous or perfectly healthy. For all these reasons, HSI represents one of the most exciting methodologies of the new millennium.

Quantitative Hyperspectral Imaging Pipeline to Recover Surface Images from CRISM Radiance Data

Quantitative Hyperspectral Imaging Pipeline to Recover Surface Images from CRISM Radiance Data
Author : Linyun He
Publisher : Unknown
Release Date : 2019
Category : Electronic dissertations
Total pages :130
GET BOOK

Hyperspectral data are important for remote applications such as mineralogy, geology, agriculture and surveillance sensing. A general pipeline converting measured hyperspectral radiance to the surface reflectance image can provide planetary scientists with clean, robust and repeatable products to work on.In this dissertation, the surface single scattering albedos (SSAs), the ratios of scattering eciency to scattering plus absorption eciences of a single particle, are selected to describe the reflectance. Moreover, the IOF, the ratio of measured spectral radiance (in the unit of watts per squared-meter and micrometer) to the solar spectral radiance (in the unit of watts per squared-meter and micrometer) at the observed time, is used to indicate the measurements.This pipeline includes two main parts: retrieving SSAs from IOF and reconstructing the SSA images from the SSA cube. The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on the Mars Reconnaissance Orbiter (MRO) helps scientists identify locations on Mars that may have exhibit hydrated mineral phases. This dissertation mainly focuses on developing the pipeline for CRISM data. One should notice that pipelines for other hyperspectral spectrometers can also be developed based on almost the same idea. Retrieving surface kinetic temperatures and SSA values from IOF data is challenging because the problem is under-determined and ill-posed, including modulating effects of atmospheric aerosols and gases, and surface scattering and emission properties. We introduce a general framework called STANN (Separating Temperature and Albedo using Neural Networks) to solve this kind of problem. STANN takes the hyperspectral IOF cube as inputs and outputs the retrieved temperature mapping and the corresponding SSA cube. Our STANN is derived using the Discrete Ordinates Radiative Transfer function to describe the forward model from SSA and temperature to IOF. In the STANN, we have a generator to generate more training samples based on limited library spectra and a neural network to approximate the inverse function based on enough generated training samples. This framework has been implemented for the Compact Imaging Spectrometer for Mars in a detailed manner. SSA can be computed from IOF directly by modeling the thermal and solar reflectance together, based on retrieved temperatures. Because accurate retrieved temperature directly leads to accurate SSA, we compare the accuracy of retrieved temperatures from STANN.The retrieved temperature has only 4 K error by one point validation (242 K) using the Curiosity Rover's thermal radiometer data. Our STANN temperature map is compared with a temperature map generated independently from a theoretical thermal model. The theoretical thermal model describes the relationship between Lambert albedo at the wavelength 1.0 [mu]m, thermal inertia and the surface temperature. However, because the thermal inertia has pixel size larger than 100 m/pixel, the generated temperature also has the same pixel size. Our STANN temperature is projected into the same pixel size (100 m/pixel) by the classic projection method. The two temperature maps have consistent global patterns.Retrieved from an IOF cube, a noisy hyperspectral SSA cube needs to be denoised and reconstructed onto the Mars surface. We propose a new algorithm, hypothesis-based estimation with regularization (HyBER), to reconstruct and denoise hyperspectral image data without extra statistical assumptions. The hypothesis test selects the best statistical model approximating measurements based on the data only. Gaussian and Poisson distributions are common respectively for continuous and integer random variables, due to the law of large numbers. Hyperspectral IOF data result from converting discrete photon counting data to continuous electrical signals after calibration. Thus, so far, Gaussian and Poisson are candidate distributions for our hypothesis tests. A regularized maximum log-likelihood estimation method is derived based on the selected model. A spatially dependent weighting on the regularization penalty is presented, substantially eliminating row artifacts that are due to non-uniform sampling. A new spectral weighting penalty is introduced to suppress varying detector-related noise. HyBER generates reconstructions with sharpened images and spectra in which the noise is suppressed, whereas fine-scale mineral absorptions are preserved. The performance is quantitatively analyzed for simulations with relative error 0.002%, which is better than the traditional non-statistical methods (baselines) and statistical methods with improper assumptions. When applied to the Mars Reconnaissance Orbiter's Compact Reconnaissance Imaging Spectrometer for Mars data, the spatial resolution and contrast are about 2 times better as compared to map projecting data without the use of HyBER. So far, part of our results has enabled planetary scientists to identify minerals and understand the forming history of Mars craters. Some of these findings are verified by the Opportunity Rover's measurements. In the future, results from this pipeline for CRISM are promising to play more and more critical roles in the planetary science.

Hyperspectral Imaging

Hyperspectral Imaging
Author : Anonim
Publisher : Elsevier
Release Date : 2019-09-29
Category : Science
Total pages :800
GET BOOK

Hyperspectral Imaging, Volume 32, presents a comprehensive exploration of the different analytical methodologies applied on hyperspectral imaging and a state-of-the-art analysis of applications in different scientific and industrial areas. This book presents, for the first time, a comprehensive collection of the main multivariate algorithms used for hyperspectral image analysis in different fields of application. The benefits, drawbacks and suitability of each are fully discussed, along with examples of their application. Users will find state-of-the art information on the machinery for hyperspectral image acquisition, along with a critical assessment of the usage of hyperspectral imaging in diverse scientific fields. Provides a comprehensive roadmap of hyperspectral image analysis, with benefits and considerations for each method discussed Covers state-of-the-art applications in different scientific fields Discusses the implementation of hyperspectral devices in different environments

The Future of Hyperspectral Imaging

The Future of Hyperspectral Imaging
Author : Stefano Selci
Publisher : MDPI
Release Date : 2019-11-20
Category : Science
Total pages :220
GET BOOK

This book includes some very recent applications and the newest emerging trends of hyper-spectral imaging (HSI). HSI is a very recent and strange beast, a sort of a melting pot of previous techniques and scientific interests, merging and concentrating the efforts of physicists, chemists, botanists, biologists, and physicians, to mention just a few, as well as experts in data crunching and statistical elaboration. For almost a century, scientific observation, from looking to planets and stars down to our own cells and below, could be divided into two main categories: analyzing objects on the basis of their physical dimension (recording size, position, weight, etc. and their variations) or on how the object emits, reflects, or absorbs part of the electromagnetic spectrum, i.e., spectroscopy. While the two aspects have been obviously entangled, instruments and skills have always been clearly distinct from each other. With HSI now available, this is no longer the case. This instrument can return specimen dimensionalities and spectroscopic properties to any single pixel of your specimen, in a single set of data. HSI modality is ubiquitous and scale-invariant enough to be used to mark terrestrial resources on the basis of a land map obtained from satellite observation (actually, the oldest application of this type) or to understand if the cell you are looking at is cancerous or perfectly healthy. For all these reasons, HSI represents one of the most exciting methodologies of the new millennium.

Hyperspectral Imaging Technology in Food and Agriculture

Hyperspectral Imaging Technology in Food and Agriculture
Author : Bosoon Park,Renfu Lu
Publisher : Springer
Release Date : 2015-09-29
Category : Technology & Engineering
Total pages :403
GET BOOK

Hyperspectral imaging or imaging spectroscopy is a novel technology for acquiring and analysing an image of a real scene by computers and other devices in order to obtain quantitative information for quality evaluation and process control. Image processing and analysis is the core technique in computer vision. With the continuous development in hardware and software for image processing and analysis, the application of hyperspectral imaging has been extended to the safety and quality evaluation of meat and produce. Especially in recent years, hyperspectral imaging has attracted much research and development attention, as a result rapid scientific and technological advances have increasingly taken place in food and agriculture, especially on safety and quality inspection, classification and evaluation of a wide range of food products, illustrating the great advantages of using the technology for objective, rapid, non-destructive and automated safety inspection as well as quality control. Therefore, as the first reference book in the area, Hyperspectral Imaging Technology in Food and Agriculture focuses on these recent advances. The book is divided into three parts, which begins with an outline of the fundamentals of the technology, followed by full covering of the application in the most researched areas of meats, fruits, vegetables, grains and other foods, which mostly covers food safety and quality as well as remote sensing applicable for crop production. Hyperspectral Imaging Technology in Food and Agriculture is written by international peers who have both academic and professional credentials, with each chapter addressing in detail one aspect of the relevant technology, thus highlighting the truly international nature of the work. Therefore the book should provide the engineer and technologist working in research, development, and operations in the food and agricultural industry with critical, comprehensive and readily accessible information on the art and science of hyperspectral imaging technology. It should also serve as an essential reference source to undergraduate and postgraduate students and researchers in universities and research institutions.

Hyperspectral Imaging Analysis and Applications for Food Quality

Hyperspectral Imaging Analysis and Applications for Food Quality
Author : N.C. Basantia,Leo M.L. Nollet,Mohammed Kamruzzaman
Publisher : CRC Press
Release Date : 2018-11-16
Category : Technology & Engineering
Total pages :284
GET BOOK

In processing food, hyperspectral imaging, combined with intelligent software, enables digital sorters (or optical sorters) to identify and remove defects and foreign material that are invisible to traditional camera and laser sorters. Hyperspectral Imaging Analysis and Applications for Food Quality explores the theoretical and practical issues associated with the development, analysis, and application of essential image processing algorithms in order to exploit hyperspectral imaging for food quality evaluations. It outlines strategies and essential image processing routines that are necessary for making the appropriate decision during detection, classification, identification, quantification, and/or prediction processes. Features Covers practical issues associated with the development, analysis, and application of essential image processing for food quality applications Surveys the breadth of different image processing approaches adopted over the years in attempting to implement hyperspectral imaging for food quality monitoring Explains the working principles of hyperspectral systems as well as the basic concept and structure of hyperspectral data Describes the different approaches used during image acquisition, data collection, and visualization The book is divided into three sections. Section I discusses the fundamentals of Imaging Systems: How can hyperspectral image cube acquisition be optimized? Also, two chapters deal with image segmentation, data extraction, and treatment. Seven chapters comprise Section II, which deals with Chemometrics. One explains the fundamentals of multivariate analysis and techniques while in six other chapters the reader will find information on and applications of a number of chemometric techniques: principal component analysis, partial least squares analysis, linear discriminant model, support vector machines, decision trees, and artificial neural networks. In the last section, Applications, numerous examples are given of applications of hyperspectral imaging systems in fish, meat, fruits, vegetables, medicinal herbs, dairy products, beverages, and food additives.

Hyperspectral Imaging for Food Quality Analysis and Control

Hyperspectral Imaging for Food Quality Analysis and Control
Author : Da-Wen Sun
Publisher : Elsevier
Release Date : 2010-06-29
Category : Technology & Engineering
Total pages :496
GET BOOK

Based on the integration of computer vision and spectrscopy techniques, hyperspectral imaging is a novel technology for obtaining both spatial and spectral information on a product. Used for nearly 20 years in the aerospace and military industries, more recently hyperspectral imaging has emerged and matured into one of the most powerful and rapidly growing methods of non-destructive food quality analysis and control. Hyperspectral Imaging for Food Quality Analysis and Control provides the core information about how this proven science can be practically applied for food quality assessment, including information on the equipment available and selection of the most appropriate of those instruments. Additionally, real-world food-industry-based examples are included, giving the reader important insights into the actual application of the science in evaluating food products. Presentation of principles and instruments provides core understanding of how this science performs, as well as guideline on selecting the most appropriate equipment for implementation Includes real-world, practical application to demonstrate the viability and challenges of working with this technology Provides necessary information for making correct determination on use of hyperspectral imaging

Hyperspectral Imaging in Agriculture, Food and Environment

Hyperspectral Imaging in Agriculture, Food and Environment
Author : Alejandro Isabel Luna Maldonado,Humberto Rodriguez-Fuentes,Juan Antonio Vidales Contreras
Publisher : BoD – Books on Demand
Release Date : 2018-08-01
Category : Technology & Engineering
Total pages :184
GET BOOK

This book is about the novel aspects and future trends of the hyperspectral imaging in agriculture, food, and environment. The topics covered by this book are hyperspectral imaging and their applications in the nondestructive quality assessment of fruits and vegetables, hyperspectral imaging for assessing quality and safety of meat, multimode hyperspectral imaging for food quality and safety, models fitting to pattern recognition in hyperspectral images, sequential classification of hyperspectral images, graph construction for hyperspectral data unmixing, target visualization method to process hyperspectral image, and soil contamination mapping with hyperspectral imagery. This book is a general reference work for students, professional engineers, and readers with interest in the subject.

Hyperspectral Imaging Remote Sensing

Hyperspectral Imaging Remote Sensing
Author : Dimitris Manolakis,Ronald Lockwood,Thomas Cooley
Publisher : Cambridge University Press
Release Date : 2016-10-31
Category : Science
Total pages :720
GET BOOK

Understand the seminal principles, current techniques, and tools of imaging spectroscopy with this self-contained introductory guide.

Hyperspectral Imaging for the Study of Two Thirteenth-century Italian Miniatures from the Marcadé Collection, Treasury of the Saint-Andre Cathedral in Bordeaux, France

Hyperspectral Imaging for the Study of Two Thirteenth-century Italian Miniatures from the Marcadé Collection, Treasury of the Saint-Andre Cathedral in Bordeaux, France
Author : Anonim
Publisher : Unknown
Release Date : 2015
Category :
Total pages :129
GET BOOK

Abstract : Illuminated manuscripts are complex multi-layered and multi-material objects which include a support, preparatory layer, pigment layers, and often highlights. During research into a collection of medieval miniatures (Marcadé collection, Treasury of the Saint-Andre Cathedral in Bordeaux, France) dating from the thirteenth to the sixteenth centuries, two Italian illuminations were studied using hyperspectral imaging. This technique associates reflectance spectra with each pixel of the image. The characteristics of the spectral signal in the visible range are used to map pigments comparing reflectance spectra obtain with those of our reference library of medieval pigments. The exploitation of the data cube of the hyperspectral imaging was completed by point analyses such as Raman and X-ray fluorescence spectroscopy commonly used for the identification of pigments. A methodological development as well as preliminary tests on models made according to medieval recipes and materials (parchments, pigments, and binders, alone and combined together), allowed the validation of the analytical parameters and the development of a database of reference spectra. In the two Italian miniatures, the palette was identified and corresponds to typical medieval pigments as lapis lazuli, red lead, lead white, green copper-based pigment, and probably anthraquinone-based pigments such as brazilwood and kermes. Gold foil gilding decorates the corners of the images.

Hyperspectral imagery warfighting through a different set of eyes

Hyperspectral imagery warfighting through a different set of eyes
Author : Anonim
Publisher : DIANE Publishing
Release Date : 2021
Category :
Total pages :129
GET BOOK

Medical Imaging and Augmented Reality

Medical Imaging and Augmented Reality
Author : Takeyoshi Dohi,Ichiro Sakuma,Hongen Liao
Publisher : Springer Science & Business Media
Release Date : 2008-07-16
Category : Computers
Total pages :441
GET BOOK

This book constitutes the refereed proceedings of the 4th International Workshop on Medical Imaging and Augmented Reality, MIAR 2008, held in Tokyo, Japan, in August 2008. The 44 revised full papers presented together with 3 invited papers were carefully reviewed and selected from 90 submissions. The papers are organized in topical sections on surgical planning and simulation, medical image computing, image analysis, shape modeling and morphometry, image-guided robotics, image-guided intervention, interventional imaging, image registration, augmented reality, and image segmentation.

Multimode Hyperspectral Imaging for Food Quality and Safety

Multimode Hyperspectral Imaging for Food Quality and Safety
Author : Fartash Vasefi
Publisher : Unknown
Release Date : 2018
Category : Technology
Total pages :129
GET BOOK

Food safety and quality are becoming progressively important, and a failure to implement monitoring processes and identify anomalies in composition, production, and distribution can lead to severe financial and customer health damages. If consumers were uncertain about food safety and quality, the impact could be profound; hence, we need better ways of minimizing such risks. On the data management side, the rise of artificial intelligence, data analytics, the Internet of Things, and blockchain all provide enormous opportunities for supply chain management and liability management, but the impact of any approach starts with the quality of the relevant data. Here, we present state-of-the-art spectroscopic technologies including hyperspectral reflectance, fluorescence imaging as well as Raman spectroscopy, and speckle imaging that are all validated for food safety and quality applications. We believe a multimode approach comprising of a number of these synergetic optical detection modes is needed for the highest performance. We present a plan where our implementations reflect this concept through a multimode tabletop system in the sense that a large, real-time production-level device would be based on more modes than this mid-level one, while a handheld, portable unit may only address fewer challenges, but with a lower cost and size.