November 30, 2020

Download Ebook Free Magnetic Skyrmions And Their Applications

Magnetic Skyrmions and Their Applications

Magnetic Skyrmions and Their Applications
Author : Giovanni Finocchio,Christos Panagopoulos
Publisher : Woodhead Publishing
Release Date : 2021-06-15
Category : Technology & Engineering
Total pages :350
GET BOOK

Magnetic skyrmions are particle-like objects described by localized solutions of non-linear partial differential equations. Up until a few decades ago, it was believed that magnetic skyrmions only existed in condensed matter as short-term excitations that would quickly collapse into linear singularities. The contrary was proven theoretically in 1989 and evidentially in 2009. It is now known that skyrmions can exist as long-living metastable configurations in low-symmetry condensed matter systems with broken mirror symmetry, increasing the potential applications possible. Magnetic Skyrmions and their Applications delves into the fundamental principles and most recent research and developments surrounding these unique magnetic particles. Despite achievements in the synthesis of systems stabilizing chiral magnetic skyrmions and the variety of experimental investigations and numerical calculations, there have not been many summaries of the fundamental physical principles governing magnetic skyrmions or integrating those concepts with methods of detection, characterization and potential applications. Magnetic Skyrmions and their Applications delivers a coherent, state-of-the-art discussion on the current knowledge and potential applications of magnetic skyrmions in magnetic materials and device applications. First the book reviews key concepts such as topology, magnetism and materials for magnetic skyrmions. Then, charactization methods, physical mechanisms, and emerging applications are discussed. Covers background knowledge and details the basic principles of magnetic skyrmions, including materials, characterization, statics and dynamics Reviews materials for skyrmion stabilization including bulk materials and interface-dominated multilayer materials Describes both well-known and unconventional applications of magnetic skyrmions, such as memristors and reservoir computing

Skyrmions

Skyrmions
Author : J. Ping Liu,Zhidong Zhang,Guoping Zhao
Publisher : CRC Press
Release Date : 2016-12-08
Category : Science
Total pages :482
GET BOOK

"The book reviews all the aspects of recent developments in research on skyrmions, from the presentation of the observation and characterization techniques to the description of physical properties and expected applications. It will be of great use for all scientists working in this field." – Albert Fert, 2007 Nobel Laureate in Physics (from the Foreword) A skyrmion is a tiny region of reversed magnetization – quasiparticles since they are not present except in a magnetic state, and also give rise to physics that cannot be described by Maxwell’s equations. These particles are fascinating subjects for theoretical and experimental studies. Moreover, as a new type of magnetic domain structure with special topological structures, skyrmions feature outstanding magnetic and transport properties and may well have applications in data storage and other advanced spintronic devices, as readers will see in this book. Chapters address the relationships between physical properties of condensed matter, such as the AB effect, Berry phase effect, quantum Hall effect, and topological insulators. Overall, it provides a timely introduction to the fundamental aspects and possible applications of magnetic skyrmions to an interdisciplinary audience from condensed matter physics, chemistry, and materials science.

Skyrmions in Magnetic Materials

Skyrmions in Magnetic Materials
Author : Shinichiro Seki,Masahito Mochizuki
Publisher : Springer
Release Date : 2015-11-19
Category : Computers
Total pages :69
GET BOOK

This brief reviews current research on magnetic skyrmions, with emphasis on formation mechanisms, observation techniques, and materials design strategies. The response of skyrmions, both static and dynamical, to various electromagnetic fields is also covered in detail. Recent progress in magnetic imaging techniques has enabled the observation of skyrmions in real space, as well as the analysis of their ordering manner and the details of their internal structure. In metallic systems, conduction electrons moving through the skyrmion spin texture gain a nontrivial quantum Berry phase, which provides topological force to the underlying spin texture and enables the current-induced manipulation of magnetic skyrmions. On the other hand, skyrmions in an insulator can induce electric polarization through relativistic spin-orbit interaction, paving the way for the control of skyrmions by an external electric field without loss of Joule heating. Because of its nanometric scale, particle nature, and electric controllability, skyrmions are considered as potential candidates for new information carriers in the next generation of spintronics devices.

Chiral and Topological Nature of Magnetic Skyrmions

Chiral and Topological Nature of Magnetic Skyrmions
Author : Shilei Zhang
Publisher : Springer
Release Date : 2018-08-27
Category : Science
Total pages :117
GET BOOK

This book focuses on the characterisation of the chiral and topological nature of magnetic skyrmions in noncentrosymmetric helimagnets. In these materials, the skyrmion lattice phase appears as a long-range-ordered, close-packed grid of nearly millimetre-level correlation length, while the size of a single skyrmion is 3–100 nm. This is a very challenging range of length scales (spanning 5 orders of magnitude from tens of nm to mm) for magnetic characterisation techniques, and, to date, extensive information on this fascinating, magnetically ordered state has remained elusive. In response, this work develops novel resonant elastic x-ray scattering (REXS) techniques, which allow the magnetic structure, including the long-range order and domain formation, as well as microscopic skyrmion parameters, to be measured across the full range of length scales. Most importantly, using circular dichroism in REXS, the internal structure of a given skyrmion, the topological winding number, and the skyrmion helicity angle can all be unambiguously determined. These new techniques are applicable to many materials systems, and allow us to retrieve information on modulated spin structures, multiferroic order, spin-density-waves, and other forms of topological magnetic order.

Springer Handbook of Microscopy

Springer Handbook of Microscopy
Author : Peter W. Hawkes,John C.H. Spence
Publisher : Springer Nature
Release Date : 2019-11-02
Category : Technology & Engineering
Total pages :1543
GET BOOK

This book features reviews by leading experts on the methods and applications of modern forms of microscopy. The recent awards of Nobel Prizes awarded for super-resolution optical microscopy and cryo-electron microscopy have demonstrated the rich scientific opportunities for research in novel microscopies. Earlier Nobel Prizes for electron microscopy (the instrument itself and applications to biology), scanning probe microscopy and holography are a reminder of the central role of microscopy in modern science, from the study of nanostructures in materials science, physics and chemistry to structural biology. Separate chapters are devoted to confocal, fluorescent and related novel optical microscopies, coherent diffractive imaging, scanning probe microscopy, transmission electron microscopy in all its modes from aberration corrected and analytical to in-situ and time-resolved, low energy electron microscopy, photoelectron microscopy, cryo-electron microscopy in biology, and also ion microscopy. In addition to serving as an essential reference for researchers and teachers in the fields such as materials science, condensed matter physics, solid-state chemistry, structural biology and the molecular sciences generally, the Springer Handbook of Microscopy is a unified, coherent and pedagogically attractive text for advanced students who need an authoritative yet accessible guide to the science and practice of microscopy.

Handbook of Magnetic Materials

Handbook of Magnetic Materials
Author : Ekkes Bruck
Publisher : Elsevier
Release Date : 2018-11-21
Category : Science
Total pages :422
GET BOOK

Handbook of Magnetic Materials, Volume 27, covers the expansion of magnetism over the last few decades and its applications in research, notably the magnetism of several classes of novel materials that share the presence of magnetic moments with truly ferromagnetic materials. The book is an ideal reference for scientists active in magnetism research, providing readers with novel trends and achievements in magnetism. Each article contains an extensive description given in graphical, as well as, tabular form, with much emphasis placed on the discussion of the experimental material within the framework of physics, chemistry and materials science. Comprises topical review articles written by leading authorities Includes a variety of self-contained introductions to a given area in the field of magnetism without requiring recourse to the published literature Introduces given topics in the field of magnetism Describes novel trends and achievements in magnetism

Toward Magnetic Skyrmion Manipulation

Toward Magnetic Skyrmion Manipulation
Author : Sebastian Alejandro Diaz Santiago
Publisher : Unknown
Release Date : 2017
Category :
Total pages :167
GET BOOK

Magnetic skyrmions are nanometer-scale spin textures that enjoy topologically-protected stability and exhibit particle-like behavior. Their rich phenomenology has ignited a growing research interest. These features and their novel transport properties have also made them attractive candidates as information carriers in future high-density magnetic-storage and logic devices, as well as integral components of other spintronic applications. Achieving a high degree of control and manipulation of skyrmions is of immense importance to applications and involves understanding fundamental aspects of the dynamics of twisted spin textures with topological charge at the nanoscale. In chapter five, we have considered zero temperature quantum nucleation of a single skyrmion in magnetic ultrathin films with interfacial Dzyaloshinskii-Moriya interaction (DMI). While a uniform field stabilizes the ferromagnet, an opposing local magnetic field, generated by the tip of a local probe, drives the skyrmion nucleation. Using spin path integrals and a collective coordinate approximation, the tunneling rate from the ferromagnetic to the single skyrmion state is computed as a function of the tip's magnetization and height above the sample surface. Based on the relation between DMI coupling and skyrmion helicity, the latter must be included as an extra degree of freedom in chiral magnets with a spatially inhomogeneous DMI. In chapter six, an effective description of skyrmion dynamics for an arbitrary inhomogeneous DMI coupling is obtained. The resulting generalized Thiele's equation is a dynamical system for the center of mass position and helicity of the skyrmion. We fully characterize the effective dynamics of a single skyrmion in a particular case of engineered DMI coupling: half-planes with opposite-sign DMI. In chapter seven, a particle-based model was used to simulate current-driven magnetic skyrmions interacting with random quenched disorder. We show that the Magnus force combined with the random pinning produces an isotropic effective shaking temperature. Spectral analysis of the velocity noise fluctuations can be used to identify dynamical phase transitions and to extract information about the different dynamic phases. In chapter eight, avalanches of flux-driven magnetic skyrmions in systems with random quenched disorder were also simulated using a particle-based model. The distribution of the avalanche sizes and durations, the associated critical exponents, and the average avalanche shape, were studied for different pinning regimes and Magnus force strengths.

Atomic- and Nanoscale Magnetism

Atomic- and Nanoscale Magnetism
Author : Roland Wiesendanger
Publisher : Springer
Release Date : 2018-11-02
Category : Science
Total pages :390
GET BOOK

This book provides a comprehensive overview of the fascinating recent developments in atomic- and nanoscale magnetism, including the physics of individual magnetic adatoms and single spins, the synthesis of molecular magnets for spintronic applications, and the magnetic properties of small clusters as well as non-collinear spin textures, such as spin spirals and magnetic skyrmions in ultrathin films and nanostructures. Starting from the level of atomic-scale magnetic interactions, the book addresses the emergence of many-body states in quantum magnetism and complex spin states resulting from the competition of such interactions, both experimentally and theoretically. It also introduces novel microscopic and spectroscopic techniques to reveal the exciting physics of magnetic adatom arrays and nanostructures at ultimate spatial and temporal resolution and demonstrates their applications using various insightful examples. The book is intended for researchers and graduate students interested in recent developments of one of the most fascinating fields of condensed matter physics.

Ultrafast Magnetism I

Ultrafast Magnetism I
Author : Jean-Yves Bigot,Wolfgang Hübner,Theo Rasing,Roy Chantrell
Publisher : Springer
Release Date : 2014-08-05
Category : Science
Total pages :341
GET BOOK

This volume on Ultrafast Magnetism is a collection of articles presented at the international “Ultrafast Magnetization Conference” held at the Congress Center in Strasbourg, France, from October 28th to November 1st, 2013. This first conference, which is intended to be held every two years, received a wonderful attendance and gathered scientists from 27 countries in the field of Femtomagnetism, encompassing many theoretical and experimental research subjects related to the spins dynamics in bulk or nanostructured materials. The participants appreciated this unique opportunity for discussing new ideas and debating on various physical interpretations of the reported phenomena. The format of a single session with many oral contributions as well as extensive time for poster presentations allowed researchers to have a detailed overview of the field. Importantly, one could sense that, in addition to studying fundamental magnetic phenomena, ultrafast magnetism has entered in a phase where applied physics and engineering are playing an important role. Several devices are being proposed with exciting R&D perspectives in the near future, in particular for magnetic recording, time resolved magnetic imaging and spin polarized transport, therefore establishing connections between various aspects of modern magnetism. Simultaneously, the diversity of techniques and experimental configurations has flourished during the past years, employing in particular Xrays, visible, infra-red and terahertz radiations. It was also obvious that an important effort is being made for tracking the dynamics of spins and magnetic domains at the nanometer scale, opening the pathway to exciting future developments. The concerted efforts between theoretical and experimental approaches for explaining the dynamical behaviors of angular momentum and energy levels, on different classes of magnetic materials, are worth pointing out. Finally it was unanimously recognized that the quality of the scientific oral and poster presentations contributed to bring the conference to a very high international standard.

Static and Dynamic Properties of Magnetic Skyrmions in Engineered Multilayer Films

Static and Dynamic Properties of Magnetic Skyrmions in Engineered Multilayer Films
Author : Ivan Lemesh
Publisher : Unknown
Release Date : 2019
Category :
Total pages :219
GET BOOK

Magnetic textures known as skyrmions promise new breakthroughs in memory, logic, and neuromorphic applications. Skyrmions have been found in a variety of material systems, yet there existed no experimental evidence of a material that could simultaneously host them at room temperature and also allow for their reproducible current-induced nucleation and motion. One main goal of this thesis is to fill this gap and demonstrate all the aforementioned properties in the introduced here [Pt/CoFeB/MgO]15 thin film heterostructures, consisting of a perpendicularly magnetized ferromagnetic layer (M), a heavy metal (H), and a symmetry-breaking spacer layer (S). Here, I developed, fabricated, and characterized the [Pt/CoFeB/MgO]15 multilayers with an extremely low density of pinning centers, which enable not only a fully reproducible skyrmion motion but also a clean study of the skyrmion nucleation process. By using X-ray microscopy, I performed the imaging of various magnetic textures in these multilayers and studied their current-induced generation and motion as a function of applied field and temperature. Finally, another goal of this work is to establish a direct link between the properties of these [H/M/S][subscript N]-type materials and the structure of magnetic textures that they can host. The energetics of such systems is understood very poorly due to the very complex multilayer stray fields and up until now, most of their analysis involved the exclusive use of micromagnetic simulations. Here, I develop an alternative theoretical approach by calculating all the stray field interactions analytically, which enables the prediction of the exact structure and dynamics of magnetic domain walls, domains, and skyrmions. Thesis

Topology in Magnetism

Topology in Magnetism
Author : Jiadong Zang,Vincent Cros,Axel Hoffmann
Publisher : Springer
Release Date : 2018-09-24
Category : Science
Total pages :416
GET BOOK

This book presents both experimental and theoretical aspects of topology in magnetism. It first discusses how the topology in real space is relevant for a variety of magnetic spin structures, including domain walls, vortices, skyrmions, and dynamic excitations, and then focuses on the phenomena that are driven by distinct topology in reciprocal momentum space, such as anomalous and spin Hall effects, topological insulators, and Weyl semimetals. Lastly, it examines how topology influences dynamic phenomena and excitations (such as spin waves, magnons, localized dynamic solitons, and Majorana fermions). The book also shows how these developments promise to lead the transformative revolution of information technology.

Magnetic Skyrmions in Oxide Thin Film Heterostructures

Magnetic Skyrmions in Oxide Thin Film Heterostructures
Author : Keng-Yuan Meng
Publisher : Unknown
Release Date : 2019
Category : Heterostructures
Total pages :92
GET BOOK

Magnetic skyrmions are nanoscale particles which have drawn significant interest in the past decade due to their potential as being the next-generation magnetic storage medium candidate. Their unique physical properties, in analogy with computer bits 0 and 1, render them an ideal candidate to revolutionize magnetic storage and logic devices. My research focuses on searching for nanoscale skyrmion-hosting materials in epitaxial oxide thin film heterostructure. While recent advancements have mostly been made on searching for skyrmions in metal-based systems, oxygen-based systems are less explored due to their rareness in nature and synthesis difficulty. We have demonstrated 10nm scale skyrmion existence in SrIrO3/SrRuO3 perovskite bilayer system by Topological Hall measurement, which is a signature transport signal of the skyrmion, and by two complementary imaging technique: magnetic force microscopy and spin-polarized scanning tunneling microscopy. Our results demonstrate that oxide heterostructure is a rich playground for searching magnetic skyrmion for future spintronic application.

The Role of Topology in Materials

The Role of Topology in Materials
Author : Sanju Gupta,Avadh Saxena
Publisher : Springer
Release Date : 2018-04-21
Category : Science
Total pages :297
GET BOOK

This book presents the most important advances in the class of topological materials and discusses the topological characterization, modeling and metrology of materials. Further, it addresses currently emerging characterization techniques such as optical and acoustic, vibrational spectroscopy (Brillouin, infrared, Raman), electronic, magnetic, fluorescence correlation imaging, laser lithography, small angle X-ray and neutron scattering and other techniques, including site-selective nanoprobes. The book analyzes the topological aspects to identify and quantify these effects in terms of topology metrics. The topological materials are ubiquitous and range from (i) de novo nanoscale allotropes of carbons in various forms such as nanotubes, nanorings, nanohorns, nanowalls, peapods, graphene, etc. to (ii) metallo-organic frameworks, (iii) helical gold nanotubes, (iv) Möbius conjugated polymers, (v) block co-polymers, (vi) supramolecular assemblies, to (vii) a variety of biological and soft-matter systems, e.g. foams and cellular materials, vesicles of different shapes and genera, biomimetic membranes, and filaments, (viii) topological insulators and topological superconductors, (ix) a variety of Dirac materials including Dirac and Weyl semimetals, as well as (x) knots and network structures. Topological databases and algorithms to model such materials have been also established in this book. In order to understand and properly characterize these important emergent materials, it is necessary to go far beyond the traditional paradigm of microscopic structure–property–function relationships to a paradigm that explicitly incorporates topological aspects from the outset to characterize and/or predict the physical properties and currently untapped functionalities of these advanced materials. Simulation and modeling tools including quantum chemistry, molecular dynamics, 3D visualization and tomography are also indispensable. These concepts have found applications in condensed matter physics, materials science and engineering, physical chemistry and biophysics, and the various topics covered in the book have potential applications in connection with novel synthesis techniques, sensing and catalysis. As such, the book offers a unique resource for graduate students and researchers alike.

Nanomagnetism

Nanomagnetism
Author : Claude Fermon,Marcel Van de Voorde
Publisher : John Wiley & Sons
Release Date : 2017-03-17
Category : Science
Total pages :346
GET BOOK

This first book to focus on the applications of nanomagnetism presents those already realized while also suggesting bold ideas for further breakthroughs. The first part is devoted to the concept of spin electronics and its use for data storage and magnetic sensing, while the second part concentrates on magnetic nanoparticles and their use in industrial environment, biological and medical applications. The third, more prospective part goes on to describe emerging applications related to spin current creation and manipulation, dynamics, spin waves and binary logic based on nano-scale magnetism. With its unique choice of topics and authors, this will appeal to academic as well as corporate researchers in a wide range of disciplines from physics via materials science to engineering, chemistry and life science.

Dynamical Magnetoelectric Phenomena of Multiferroic Skyrmions

Dynamical Magnetoelectric Phenomena of Multiferroic Skyrmions
Author : Anonim
Publisher : Unknown
Release Date : 2015
Category :
Total pages :129
GET BOOK

Abstract: Magnetic skyrmions, vortex-like swirling spin textures characterized by a quantized topological invariant, realized in chiral-lattice magnets are currently attracting intense research interest. In particular, their dynamics under external fields is an issue of vital importance both for fundamental science and for technical application. Whereas observations of magnetic skyrmions has been limited to metallic magnets so far, their realization was also discovered in a chiral-lattice insulating magnet Cu2 OSeO3 in 2012. Skyrmions in the insulator turned out to exhibit multiferroic nature with spin-induced ferroelectricity. Strong magnetoelectric coupling between noncollinear skyrmion spins and electric polarizations mediated by relativistic spin–orbit interaction enables us to drive motion and oscillation of magnetic skyrmions by application of electric fields instead of injection of electric currents. Insulating materials also provide an environment suitable for detection of pure spin dynamics through spectroscopic measurements owing to the absence of appreciable charge excitations. In this article, we review recent theoretical and experimental studies on multiferroic properties and dynamical magnetoelectric phenomena of magnetic skyrmions in insulators. We argue that multiferroic skyrmions show unique coupled oscillation modes of magnetizations and polarizations, so-called electromagnon excitations, which are both magnetically and electrically active, and interference between the electric and magnetic activation processes leads to peculiar magnetoelectric effects in a microwave frequency regime.