# Download Ebook Free Mathematical Concepts And Methods In Modern Biology

## Mathematical Concepts and Methods in Modern Biology

Publisher : Academic Press

Release Date : 2013-02-26

Category : Mathematics

Total pages :372

GET BOOK

Mathematical Concepts and Methods in Modern Biology offers a quantitative framework for analyzing, predicting, and modulating the behavior of complex biological systems. The book presents important mathematical concepts, methods and tools in the context of essential questions raised in modern biology. Designed around the principles of project-based learning and problem-solving, the book considers biological topics such as neuronal networks, plant population growth, metabolic pathways, and phylogenetic tree reconstruction. The mathematical modeling tools brought to bear on these topics include Boolean and ordinary differential equations, projection matrices, agent-based modeling and several algebraic approaches. Heavy computation in some of the examples is eased by the use of freely available open-source software. Features self-contained chapters with real biological research examples using freely available computational tools Spans several mathematical techniques at basic to advanced levels Offers broad perspective on the uses of algebraic geometry/polynomial algebra in molecular systems biology

## Algebraic and Discrete Mathematical Methods for Modern Biology

Publisher : Academic Press

Release Date : 2015-05-09

Category : Mathematics

Total pages :382

GET BOOK

Written by experts in both mathematics and biology, Algebraic and Discrete Mathematical Methods for Modern Biology offers a bridge between math and biology, providing a framework for simulating, analyzing, predicting, and modulating the behavior of complex biological systems. Each chapter begins with a question from modern biology, followed by the description of certain mathematical methods and theory appropriate in the search of answers. Every topic provides a fast-track pathway through the problem by presenting the biological foundation, covering the relevant mathematical theory, and highlighting connections between them. Many of the projects and exercises embedded in each chapter utilize specialized software, providing students with much-needed familiarity and experience with computing applications, critical components of the "modern biology" skill set. This book is appropriate for mathematics courses such as finite mathematics, discrete structures, linear algebra, abstract/modern algebra, graph theory, probability, bioinformatics, statistics, biostatistics, and modeling, as well as for biology courses such as genetics, cell and molecular biology, biochemistry, ecology, and evolution. Examines significant questions in modern biology and their mathematical treatments Presents important mathematical concepts and tools in the context of essential biology Features material of interest to students in both mathematics and biology Presents chapters in modular format so coverage need not follow the Table of Contents Introduces projects appropriate for undergraduate research Utilizes freely accessible software for visualization, simulation, and analysis in modern biology Requires no calculus as a prerequisite Provides a complete Solutions Manual Features a companion website with supplementary resources

## An Invitation to Biomathematics

Publisher : Academic Press

Release Date : 2007-08-28

Category : Mathematics

Total pages :480

GET BOOK

Essential for all biology and biomathematics courses, this textbook provides students with a fresh perspective of quantitative techniques in biology in a field where virtually any advance in the life sciences requires a sophisticated mathematical approach. An Invitation to Biomathematics, expertly written by a team of experienced educators, offers students a solid understanding of solving biological problems with mathematical applications. This text succeeds in enabling students to truly experience advancements made in biology through mathematical models by containing computer-based hands-on laboratory projects with emphasis on model development, model validation, and model refinement. The supplementary work, Laboratory Manual of Biomathematics is available separately ISBN 0123740223, or as a set ISBN: 0123740290) * Provides a complete guide for development of quantification skills crucial for applying mathematical methods to biological problems * Includes well-known examples from across disciplines in the life sciences including modern biomedical research * Explains how to use data sets or dynamical processes to build mathematical models * Offers extensive illustrative materials * Written in clear and easy-to-follow language without assuming a background in math or biology * A laboratory manual is available for hands-on, computer-assisted projects based on material covered in the text

## Mathematics for the Life Sciences

Publisher : Princeton University Press

Release Date : 2014-08-17

Category : Mathematics

Total pages :640

GET BOOK

An accessible undergraduate textbook on the essential math concepts used in the life sciences The life sciences deal with a vast array of problems at different spatial, temporal, and organizational scales. The mathematics necessary to describe, model, and analyze these problems is similarly diverse, incorporating quantitative techniques that are rarely taught in standard undergraduate courses. This textbook provides an accessible introduction to these critical mathematical concepts, linking them to biological observation and theory while also presenting the computational tools needed to address problems not readily investigated using mathematics alone. Proven in the classroom and requiring only a background in high school math, Mathematics for the Life Sciences doesn't just focus on calculus as do most other textbooks on the subject. It covers deterministic methods and those that incorporate uncertainty, problems in discrete and continuous time, probability, graphing and data analysis, matrix modeling, difference equations, differential equations, and much more. The book uses MATLAB throughout, explaining how to use it, write code, and connect models to data in examples chosen from across the life sciences. Provides undergraduate life science students with a succinct overview of major mathematical concepts that are essential for modern biology Covers all the major quantitative concepts that national reports have identified as the ideal components of an entry-level course for life science students Provides good background for the MCAT, which now includes data-based and statistical reasoning Explicitly links data and math modeling Includes end-of-chapter homework problems, end-of-unit student projects, and select answers to homework problems Uses MATLAB throughout, and MATLAB m-files with an R supplement are available online Prepares students to read with comprehension the growing quantitative literature across the life sciences A solutions manual for professors and an illustration package is available

## Algebraic and Combinatorial Computational Biology

Publisher : Academic Press

Release Date : 2018-10-08

Category : Mathematics

Total pages :434

GET BOOK

Algebraic and Combinatorial Computational Biology introduces students and researchers to a panorama of powerful and current methods for mathematical problem-solving in modern computational biology. Presented in a modular format, each topic introduces the biological foundations of the field, covers specialized mathematical theory, and concludes by highlighting connections with ongoing research, particularly open questions. The work addresses problems from gene regulation, neuroscience, phylogenetics, molecular networks, assembly and folding of biomolecular structures, and the use of clustering methods in biology. A number of these chapters are surveys of new topics that have not been previously compiled into one unified source. These topics were selected because they highlight the use of technique from algebra and combinatorics that are becoming mainstream in the life sciences. Integrates a comprehensive selection of tools from computational biology into educational or research programs Emphasizes practical problem-solving through multiple exercises, projects and spinoff computational simulations Contains scalable material for use in undergraduate and graduate-level classes and research projects Introduces the reader to freely-available professional software Supported by illustrative datasets and adaptable computer code

## Laboratory Manual of Biomathematics

Publisher : Academic Press

Release Date : 2008

Category : Mathematics

Total pages :178

GET BOOK

Laboratory Manual of Biomathematics is a companion to the textbook An Invitation to Biomathematics. This laboratory manual expertly aids students who wish to gain a deeper understanding of solving biological issues with computer programs. It provides hands-on exploration of model development, model validation, and model refinement, enabling students to truly experience advancements made in biology by mathematical models. Each of the projects offered can be used as individual module in traditional biology or mathematics courses such as calculus, ordinary differential equations, elementary probability, statistics, and genetics. Biological topics include: Ecology, Toxicology, Microbiology, Epidemiology, Genetics, Biostatistics, Physiology, Cell Biology, and Molecular Biology . Mathematical topics include Discrete and continuous dynamical systems, difference equations, differential equations, probability distributions, statistics, data transformation, risk function, statistics, approximate entropy, periodic components, and pulse-detection algorithms. It includes more than 120 exercises derived from ongoing research studies. This text is designed for courses in mathematical biology, undergraduate biology majors, as well as general mathematics. The reader is not expected to have any extensive background in either math or biology. Can be used as a computer lab component of a course in biomathematics or as homework projects for independent student work Biological topics include: Ecology, Toxicology, Microbiology, Epidemiology, Genetics, Biostatistics, Physiology, Cell Biology, and Molecular Biology Mathematical topics include: Discrete and continuous dynamical systems, difference equations, differential equations, probability distributions, statistics, data transformation, risk function, statistics, approximate entropy, periodic components, and pulse-detection algorithms Includes more than 120 exercises derived from ongoing research studies

## Mathematical Models in Biology

Publisher : SIAM

Release Date : 1988

Category : Biology

Total pages :586

GET BOOK

Mathematical Models in Biology is an introductory book for readers interested in biological applications of mathematics and modeling in biology. A favorite in the mathematical biology community, it shows how relatively simple mathematics can be applied to a variety of models to draw interesting conclusions. Connections are made between diverse biological examples linked by common mathematical themes. A variety of discrete and continuous ordinary and partial differential equation models are explored. Although great advances have taken place in many of the topics covered, the simple lessons contained in this book are still important and informative. Audience: the book does not assume too much background knowledge--essentially some calculus and high-school algebra. It was originally written with third- and fourth-year undergraduate mathematical-biology majors in mind; however, it was picked up by beginning graduate students as well as researchers in math (and some in biology) who wanted to learn about this field.

## Mathematical Techniques For Physiology and Medicine

Publisher : Elsevier

Release Date : 2013-11-11

Category : Science

Total pages :278

GET BOOK

Mathematical Techniques For Physiology and Medicine

## Modern Statistics for Modern Biology

Publisher : Cambridge University Press

Release Date : 2018-11-30

Category :

Total pages :400

GET BOOK

A far-reaching course in practical advanced statistics for biologists using R/Bioconductor, data exploration, and simulation.

## Mathematical Modeling in Systems Biology

Publisher : MIT Press

Release Date : 2013-07-05

Category : Science

Total pages :408

GET BOOK

An introduction to the mathematical concepts and techniques needed for the construction and analysis of models in molecular systems biology. Systems techniques are integral to current research in molecular cell biology, and system-level investigations are often accompanied by mathematical models. These models serve as working hypotheses: they help us to understand and predict the behavior of complex systems. This book offers an introduction to mathematical concepts and techniques needed for the construction and interpretation of models in molecular systems biology. It is accessible to upper-level undergraduate or graduate students in life science or engineering who have some familiarity with calculus, and will be a useful reference for researchers at all levels. The first four chapters cover the basics of mathematical modeling in molecular systems biology. The last four chapters address specific biological domains, treating modeling of metabolic networks, of signal transduction pathways, of gene regulatory networks, and of electrophysiology and neuronal action potentials. Chapters 3–8 end with optional sections that address more specialized modeling topics. Exercises, solvable with pen-and-paper calculations, appear throughout the text to encourage interaction with the mathematical techniques. More involved end-of-chapter problem sets require computational software. Appendixes provide a review of basic concepts of molecular biology, additional mathematical background material, and tutorials for two computational software packages (XPPAUT and MATLAB) that can be used for model simulation and analysis.

## Mathematical Techniques for Biology and Medicine

Publisher : Courier Corporation

Release Date : 2015-05-05

Category : Science

Total pages :340

GET BOOK

Suitable for both graduate and undergraduate courses, this text recalls basic concepts of calculus and shows how problems can be formulated in terms of differential equations. Fully worked-out solutions to selected problems. Fourth edition.

## An Introduction to Systems Biology

Publisher : CRC Press

Release Date : 2006-07-07

Category : Mathematics

Total pages :320

GET BOOK

Thorough and accessible, this book presents the design principles of biological systems, and highlights the recurring circuit elements that make up biological networks. It provides a simple mathematical framework which can be used to understand and even design biological circuits. The textavoids specialist terms, focusing instead on several well-studied biological systems that concisely demonstrate key principles. An Introduction to Systems Biology: Design Principles of Biological Circuits builds a solid foundation for the intuitive understanding of general principles. It encourages the reader to ask why a system is designed in a particular way and then proceeds to answer with simplified models.

## Computational Cell Biology

Publisher : Springer Science & Business Media

Release Date : 2007-06-04

Category : Science

Total pages :468

GET BOOK

This textbook provides an introduction to dynamic modeling in molecular cell biology, taking a computational and intuitive approach. Detailed illustrations, examples, and exercises are included throughout the text. Appendices containing mathematical and computational techniques are provided as a reference tool.

## Essential Mathematical Biology

Publisher : Springer Science & Business Media

Release Date : 2012-12-06

Category : Mathematics

Total pages :335

GET BOOK

This self-contained introduction to the fast-growing field of Mathematical Biology is written for students with a mathematical background. It sets the subject in a historical context and guides the reader towards questions of current research interest. A broad range of topics is covered including: Population dynamics, Infectious diseases, Population genetics and evolution, Dispersal, Molecular and cellular biology, Pattern formation, and Cancer modelling. Particular attention is paid to situations where the simple assumptions of homogenity made in early models break down and the process of mathematical modelling is seen in action.