June 17, 2021

## Mathematical Techniques of Fractional Order Systems

Publisher : Elsevier
Release Date : 2018-06-11
Category : Technology & Engineering
Total pages :700

Mathematical Techniques of Fractional Order Systems illustrates advances in linear and nonlinear fractional-order systems relating to many interdisciplinary applications, including biomedical, control, circuits, electromagnetics and security. The book covers the mathematical background and literature survey of fractional-order calculus and generalized fractional-order circuit theorems from different perspectives in design, analysis and realizations, nonlinear fractional-order circuits and systems, the fractional-order memristive circuits and systems in design, analysis, emulators, simulation and experimental results. It is primarily meant for researchers from academia and industry, and for those working in areas such as control engineering, electrical engineering, computer science and information technology. This book is ideal for researchers working in the area of both continuous-time and discrete-time dynamics and chaotic systems. Discusses multidisciplinary applications with new fundamentals, modeling, analysis, design, realization and experimental results Includes circuits and systems based on new nonlinear elements Covers most of the linear and nonlinear fractional-order theorems that will solve many scientific issues for researchers Closes the gap between theoretical approaches and real-world applications Provides MATLAB® and Simulink code for many applications in the book

## Fractional Order Systems and Applications in Engineering

Author : Dumitru Baleanu,Valentina Emilia Balas,Agarwal Praveen
Release Date : 2021-08-15
Category : Science
Total pages :232

Fractional Order Systems and Applications in Engineering presents the use of fractional calculus (calculus of non-integer order) in the description and modelling of systems and in a range of control design and practical applications. The book covers the fundamentals of fractional calculus together with some analytical and numerical techniques, and provides MATLAB® codes for the simulation of fractional-order control (FOC) systems. The use of fractional calculus can improve and generalize well-established control methods and strategies. Many different FOC schemes are presented for control and dynamic systems problems. These extend to the challenging control engineering design problems of robust and nonlinear control. Practical material relating to a wide variety of applications including, among others, mechatronics, civil engineering, irrigation and water management, and biological systems is also provided. All the control schemes and applications are presented with either system simulation results or real experimental results, or both. Fractional Order Systems and Applications in Engineering introduces readers to the essentials of FOC and imbues them with a basic understanding of FOC concepts and methods. With this knowledge readers can extend their use of FOC in other industrial system applications, thereby expanding their range of disciplines by exploiting this versatile new set of control techniques. Provides the most recent and up-to-date developments on the Fractional-order Systems and their analyzing process Integrates recent advancements of modeling of real phenomena (on Fractional-order Systems) via different-different mathematical equations with demonstrated applications in numerous seemingly diverse and widespread fields of science and engineering Provides readers with illustrative examples of how to use the presented theories of Fractional-order Systems in specific cases with associated MATLAB code

## Fractional Order Systems

Release Date : 2018-08-16
Category : Technology & Engineering
Total pages :741

Fractional Order Systems: Optimization, Control, Circuit Realizations and Applications consists of 21 contributed chapters by subject experts. Chapters offer practical solutions and novel methods for recent research problems in the multidisciplinary applications of fractional order systems, such as FPGA, circuits, memristors, control algorithms, photovoltaic systems, robot manipulators, oscillators, etc. This book is ideal for researchers working in the modeling and applications of both continuous-time and discrete-time dynamics and chaotic systems. Researchers from academia and industry who are working in research areas such as control engineering, electrical engineering, mechanical engineering, computer science, and information technology will find the book most informative. Discusses multi-disciplinary applications with new fundamentals, modeling, analysis, design, realization and experimental results Includes new circuits and systems based on the new nonlinear elements Covers most of the linear and nonlinear fractional-order theorems that will solve many scientific issues for researchers Closes the gap between theoretical approaches and real-world applications Provides MATLAB® and Simulink code for many of the applications in the book

## Fractional-Order Design: Devices, Circuits, and Systems

Release Date : 2021-10-15
Category : Technology & Engineering
Total pages :700

Fractional-order systems are believed to play an essential role in our day-to-day activities. Therefore, several researchers around the globe endeavor to work in the different domains of fractional-order systems. The efforts include developing the mathematics to solve fractional-order calculus/systems and to achieve the feasible designs for various applications of fractional-order systems. The applications vary from biomedical engineering-control systems-robotics-bio impedance modeling-chaotic systems-signal processing etc. Given the importance of the fractional-order systems, it is timely to present Fractional Order Systems: Mathematics, Design, and Applications for engineers. The book introduces applications from the design perspective so that the reader, besides getting know-how about a particular application, also gets ready to design these applications. Also, includes the different techniques employed to design fractional-order systems/devices comprehensively and straightforwardly. Furthermore, a lot of mathematics is available in the literature for solving the fractional-order calculus for system application. However, a small portion is employed in the design of fractional-order systems. This book introduces the mathematics that has been employed explicitly for fractional-order systems. It will prove an excellent material for students and scholars who wants to quickly understand the field of fractional-order systems and contribute to its different domains and applications. Presents the simple and comprehensive understanding of the field of fractional-order systems Offers the practical knowledge about the design of fractional-order systems for their different applications Exposures to the possible new areas of applications of fractional-order systems

## Fractional Differential Equations

Author : Igor Podlubny
Publisher : Elsevier
Release Date : 1998-10-27
Category : Mathematics
Total pages :340

This book is a landmark title in the continuous move from integer to non-integer in mathematics: from integer numbers to real numbers, from factorials to the gamma function, from integer-order models to models of an arbitrary order. For historical reasons, the word 'fractional' is used instead of the word 'arbitrary'. This book is written for readers who are new to the fields of fractional derivatives and fractional-order mathematical models, and feel that they need them for developing more adequate mathematical models. In this book, not only applied scientists, but also pure mathematicians will find fresh motivation for developing new methods and approaches in their fields of research. A reader will find in this book everything necessary for the initial study and immediate application of fractional derivatives fractional differential equations, including several necessary special functions, basic theory of fractional differentiation, uniqueness and existence theorems, analytical numerical methods of solution of fractional differential equations, and many inspiring examples of applications. A unique survey of many applications of fractional calculus Presents basic theory Includes a unified presentation of selected classical results, which are important for applications Provides many examples Contains a separate chapter of fractional order control systems, which opens new perspectives in control theory The first systematic consideration of Caputo's fractional derivative in comparison with other selected approaches Includes tables of fractional derivatives, which can be used for evaluation of all considered types of fractional derivatives

## Fractional Dynamics and Control

Author : Dumitru Baleanu,José António Tenreiro Machado,Albert C. J. Luo
Publisher : Springer Science & Business Media
Release Date : 2011-11-19
Category : Technology & Engineering
Total pages :310

Fractional Dynamics and Control provides a comprehensive overview of recent advances in the areas of nonlinear dynamics, vibration and control with analytical, numerical, and experimental results. This book provides an overview of recent discoveries in fractional control, delves into fractional variational principles and differential equations, and applies advanced techniques in fractional calculus to solving complicated mathematical and physical problems.Finally, this book also discusses the role that fractional order modeling can play in complex systems for engineering and science.

## Fractional Order Systems

Release Date : 2021-10-15
Category : Technology & Engineering
Total pages :700

Fractional-order systems are believed to play an essential role in our day-to-day activities. Therefore, several researchers around the globe endeavor to work in the different domains of fractional-order systems. The efforts include developing the mathematics to solve fractional-order calculus/systems and to achieve the feasible designs for various applications of fractional-order systems. The applications vary from biomedical engineering-control systems-robotics-bio impedance modeling-chaotic systems-signal processing etc. Given the importance of the fractional-order systems, it is timely to present Fractional Order Systems: Mathematics, Design, and Applications for Engineers. The book introduces applications from the design perspective so that the reader, besides getting know-how about a particular application, also gets ready to design these applications. Also, includes the different techniques employed to design fractional-order systems/devices comprehensively and straightforwardly. Furthermore, a lot of mathematics is available in the literature for solving the fractional-order calculus for system application. However, a small portion is employed in the design of fractional-order systems. This book introduces the mathematics that has been employed explicitly for fractional-order systems. It will prove an excellent material for students and scholars who wants to quickly understand the field of fractional-order systems and contribute to its different domains and applications. Presents the simple and comprehensive understanding of the field of fractional-order systems Offers the practical knowledge about the design of fractional-order systems for their different applications Exposures to the possible new areas of applications of fractional-order systems

## Special Functions and Analysis of Differential Equations

Author : Praveen Agarwal,Ravi P Agarwal,Michael Ruzhansky
Publisher : CRC Press
Release Date : 2020-09-08
Category : Mathematics
Total pages :354

Differential Equations are very important tools in Mathematical Analysis. They are widely found in mathematics itself and in its applications to statistics, computing, electrical circuit analysis, dynamical systems, economics, biology, and so on. Recently there has been an increasing interest in and widely-extended use of differential equations and systems of fractional order (that is, of arbitrary order) as better models of phenomena in various physics, engineering, automatization, biology and biomedicine, chemistry, earth science, economics, nature, and so on. Now, new unified presentation and extensive development of special functions associated with fractional calculus are necessary tools, being related to the theory of differentiation and integration of arbitrary order (i.e., fractional calculus) and to the fractional order (or multi-order) differential and integral equations. This book provides learners with the opportunity to develop an understanding of advancements of special functions and the skills needed to apply advanced mathematical techniques to solve complex differential equations and Partial Differential Equations (PDEs). Subject matters should be strongly related to special functions involving mathematical analysis and its numerous applications. The main objective of this book is to highlight the importance of fundamental results and techniques of the theory of complex analysis for differential equations and PDEs and emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Specific topics include but are not limited to Partial differential equations Least squares on first-order system Sequence and series in functional analysis Special functions related to fractional (non-integer) order control systems and equations Various special functions related to generalized fractional calculus Operational method in fractional calculus Functional analysis and operator theory Mathematical physics Applications of numerical analysis and applied mathematics Computational mathematics Mathematical modeling This book provides the recent developments in special functions and differential equations and publishes high-quality, peer-reviewed book chapters in the area of nonlinear analysis, ordinary differential equations, partial differential equations, and related applications.

## Fractional Order Processes

Author : Seshu Kumar Damarla,Madhusree Kundu
Publisher : CRC Press
Release Date : 2018-09-03
Category : Mathematics
Total pages :340

The book presents efficient numerical methods for simulation and analysis of physical processes exhibiting fractional order (FO) dynamics. The book introduces FO system identification method to estimate parameters of a mathematical model under consideration from experimental or simulated data. A simple tuning technique, which aims to produce a robust FO PID controller exhibiting iso-damping property during re-parameterization of a plant, is devised in the book. A new numerical method to find an equivalent finite dimensional integer order system for an infinite dimensional FO system is developed in the book. The book also introduces a numerical method to solve FO optimal control problems. Key features Proposes generalized triangular function operational matrices. Shows significant applications of triangular orthogonal functions as well as triangular strip operational matrices in simulation, identification and control of fractional order processes. Provides numerical methods for simulation of physical problems involving different types of weakly singular integral equations, Abel’s integral equation, fractional order integro-differential equations, fractional order differential and differential-algebraic equations, and fractional order partial differential equations. Suggests alternative way to do numerical computation of fractional order signals and systems and control. Provides source codes developed in MATLAB for each chapter, allowing the interested reader to take advantage of these codes for broadening and enhancing the scope of the book itself and developing new results.

## Fractional Order Processes

Author : Seshu Kumar Damarla,Madhusree Kundu
Publisher : CRC Press
Release Date : 2018-09-03
Category : Mathematics
Total pages :340

The book presents efficient numerical methods for simulation and analysis of physical processes exhibiting fractional order (FO) dynamics. The book introduces FO system identification method to estimate parameters of a mathematical model under consideration from experimental or simulated data. A simple tuning technique, which aims to produce a robust FO PID controller exhibiting iso-damping property during re-parameterization of a plant, is devised in the book. A new numerical method to find an equivalent finite dimensional integer order system for an infinite dimensional FO system is developed in the book. The book also introduces a numerical method to solve FO optimal control problems. Key features Proposes generalized triangular function operational matrices. Shows significant applications of triangular orthogonal functions as well as triangular strip operational matrices in simulation, identification and control of fractional order processes. Provides numerical methods for simulation of physical problems involving different types of weakly singular integral equations, Abel’s integral equation, fractional order integro-differential equations, fractional order differential and differential-algebraic equations, and fractional order partial differential equations. Suggests alternative way to do numerical computation of fractional order signals and systems and control. Provides source codes developed in MATLAB for each chapter, allowing the interested reader to take advantage of these codes for broadening and enhancing the scope of the book itself and developing new results.

## Non-Integer Order Calculus and its Applications

Author : Piotr Ostalczyk,Dominik Sankowski,Jacek Nowakowski
Publisher : Springer
Release Date : 2018-03-22
Category : Technology & Engineering
Total pages :229

This book focuses on fractional calculus, presenting novel advances in both the theory and applications of non-integer order systems. At the end of the twentieth century it was predicted that it would be the calculus of the twenty-first century, and that prophecy is confirmed year after year. Now this mathematical tool is successfully used in a variety of research areas, like engineering (e.g. electrical, mechanical, chemical), dynamical systems modeling, analysis and synthesis (e.g technical, biological, economical) as well as in multidisciplinary areas (e.g. biochemistry, electrochemistry).As well as the mathematical foundations the book concentrates on the technical applications of continuous-time and discrete-time fractional calculus, investigating the identification, analysis and control of electrical circuits and dynamical systems. It also presents the latest results.Although some scientific centers and scientists are skeptical and actively criticize the applicability of fractional calculus, it is worth breaking through the scientific and technological walls. Because the “fractional community” is growing rapidly there is a pressing need for the exchange of scientific results. The book includes papers presented at the 9th International Conference on Non-integer Order Calculus and Its Applications and is divided into three parts:• Mathematical foundations• Fractional systems analysis and synthesis• System modelingSeven papers discuss the mathematical foundations, twelve papers address fractional order analysis and synthesis and three focus on dynamical system modeling by the fractional order differential and difference equations. It is a useful resource for fractional calculus scientific community.

## Fractional Order Systems

Author : Riccardo Caponetto
Publisher : World Scientific
Release Date : 2010
Category : Computers
Total pages :200

This book aims to propose implementations and applications of Fractional Order Systems (FOS). It is well known that FOS can be applied in control applications and systems modeling, and their effectiveness has been proven in many theoretical works and simulation routines. A further and mandatory step for FOS real world utilization is their hardware implementation and applications on real systems modeling. With this viewpoint, introductive chapters on FOS are included, on the definition of stability region of Fractional Order PID Controller and Chaotic FOS, followed by the practical implementation based on Microcontroller, Field Programmable Gate Array, Field Programmable Analog Array and Switched Capacitor. Another section is dedicated to FO modeling of Ionic Polymeric Metal Composite (IPMC). This new material may have applications in robotics, aerospace and biomedicine.

## Fuzzy Arbitrary Order System

Author : Snehashish Chakraverty,Smita Tapaswini,Diptiranjan Behera
Publisher : John Wiley & Sons
Release Date : 2016-08-29
Category : Mathematics
Total pages :272

Presents a systematic treatment of fuzzy fractional differential equations as well as newly developed computational methods to model uncertain physical problems Complete with comprehensive results and solutions, Fuzzy Arbitrary Order System: Fuzzy Fractional Differential Equations and Applications details newly developed methods of fuzzy computational techniquesneeded to model solve uncertainty. Fuzzy differential equations are solved via various analytical andnumerical methodologies, and this book presents their importance for problem solving, prototypeengineering design, and systems testing in uncertain environments. In recent years, modeling of differential equations for arbitrary and fractional order systems has been increasing in its applicability, and as such, the authors feature examples from a variety of disciplines to illustrate the practicality and importance of the methods within physics, applied mathematics, engineering, and chemistry, to name a few. The fundamentals of fractional differential equations and the basic preliminaries of fuzzy fractional differential equations are first introduced, followed by numerical solutions, comparisons of various methods, and simulated results. In addition, fuzzy ordinary, partial, linear, and nonlinear fractional differential equations are addressed to solve uncertainty in physical systems. In addition, this book features: Basic preliminaries of fuzzy set theory, an introduction of fuzzy arbitrary order differential equations, and various analytical and numerical procedures for solving associated problems Coverage on a variety of fuzzy fractional differential equations including structural, diffusion, and chemical problems as well as heat equations and biomathematical applications Discussions on how to model physical problems in terms of nonprobabilistic methods and provides systematic coverage of fuzzy fractional differential equations and its applications Uncertainties in systems and processes with a fuzzy concept Fuzzy Arbitrary Order System: Fuzzy Fractional Differential Equations and Applications is an ideal resource for practitioners, researchers, and academicians in applied mathematics, physics, biology, engineering, computer science, and chemistry who need to model uncertain physical phenomena and problems. The book is appropriate for graduate-level courses on fractional differential equations for students majoring in applied mathematics, engineering, physics, and computer science.

## Fractional-Order Nonlinear Systems

Author : Ivo Petráš
Publisher : Springer Science & Business Media
Release Date : 2011-05-30
Category : Technology & Engineering
Total pages :218

"Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation" presents a study of fractional-order chaotic systems accompanied by Matlab programs for simulating their state space trajectories, which are shown in the illustrations in the book. Description of the chaotic systems is clearly presented and their analysis and numerical solution are done in an easy-to-follow manner. Simulink models for the selected fractional-order systems are also presented. The readers will understand the fundamentals of the fractional calculus, how real dynamical systems can be described using fractional derivatives and fractional differential equations, how such equations can be solved, and how to simulate and explore chaotic systems of fractional order. The book addresses to mathematicians, physicists, engineers, and other scientists interested in chaos phenomena or in fractional-order systems. It can be used in courses on dynamical systems, control theory, and applied mathematics at graduate or postgraduate level. Ivo Petráš is an Associate Professor of automatic control and the Director of the Institute of Control and Informatization of Production Processes, Faculty of BERG, Technical University of Košice, Slovak Republic. His main research interests include control systems, industrial automation, and applied mathematics.