December 5, 2020

Download Ebook Free Methods In Biomedical Informatics

Evaluation Methods in Biomedical Informatics

Evaluation Methods in Biomedical Informatics
Author : Charles P. Friedman,Jeremy Wyatt
Publisher : Springer Science & Business Media
Release Date : 2006-01-05
Category : Medical
Total pages :386
GET BOOK

Heavily updated and revised from the successful first edition Appeals to a wide range of informatics professionals, from students to on-site medical information system administrators Includes case studies and real world system evaluations References and self-tests for feedback and motivation after each chapter Great for teaching purposes, the book is recommended for courses offered at universities such as Columbia University Precise definition and use of terms

Methods in Biomedical Informatics

Methods in Biomedical Informatics
Author : Indra Neil Sarkar
Publisher : Academic Press
Release Date : 2013-09-03
Category : Computers
Total pages :592
GET BOOK

Beginning with a survey of fundamental concepts associated with data integration, knowledge representation, and hypothesis generation from heterogeneous data sets, Methods in Biomedical Informatics provides a practical survey of methodologies used in biological, clinical, and public health contexts. These concepts provide the foundation for more advanced topics like information retrieval, natural language processing, Bayesian modeling, and learning classifier systems. The survey of topics then concludes with an exposition of essential methods associated with engineering, personalized medicine, and linking of genomic and clinical data. Within an overall context of the scientific method, Methods in Biomedical Informatics provides a practical coverage of topics that is specifically designed for: (1) domain experts seeking an understanding of biomedical informatics approaches for addressing specific methodological needs; or (2) biomedical informaticians seeking an approachable overview of methodologies that can be used in scenarios germane to biomedical research. Contributors represent leading biomedical informatics experts: individuals who have demonstrated effective use of biomedical informatics methodologies in the real-world, high-quality biomedical applications Material is presented as a balance between foundational coverage of core topics in biomedical informatics with practical "in-the-trenches" scenarios. Contains appendices that function as primers on: (1) Unix; (2) Ruby; (3) Databases; and (4) Web Services.

Evaluation Methods in Medical Informatics

Evaluation Methods in Medical Informatics
Author : Charles P. Friedman,Jeremy C. Wyatt
Publisher : Springer Science & Business Media
Release Date : 2013-03-14
Category : Medical
Total pages :311
GET BOOK

As director of a training program in medical informatics, I have found that one of the most frequent inquiries from graduate students is, "Although I am happy with my research focus and the work I have done, how can I design and carry out a practical evaluation that proves the value of my contribution?" Informatics is a multifaceted, interdisciplinary field with research that ranges from theoretical developments to projects that are highly applied and intended for near-term use in clinical settings. The implications of "proving" a research claim accordingly vary greatly depending on the details of an individual student's goals and thesis state ment. Furthermore, the dissertation work leading up to an evaluation plan is often so time-consuming and arduous that attempting the "perfect" evaluation is fre quently seen as impractical or as diverting students from central programming or implementation issues that are their primary areas of interest. They often ask what compromises are possible so they can provide persuasive data in support of their claims without adding another two to three years to their graduate student life. Our students clearly needed help in dealing more effectively with such dilem mas, and it was therefore fortuitous when, in the autumn of 1991, we welcomed two superb visiting professors to our laboratories.

Methods in Medical Informatics

Methods in Medical Informatics
Author : Jules J. Berman
Publisher : CRC Press
Release Date : 2010-09-22
Category : Mathematics
Total pages :413
GET BOOK

Too often, healthcare workers are led to believe that medical informatics is a complex field that can only be mastered by teams of professional programmers. This is simply not the case. With just a few dozen simple algorithms, easily implemented with open source programming languages, you can fully utilize the medical information contained in clini

Deep Learning Techniques for Biomedical and Health Informatics

Deep Learning Techniques for Biomedical and Health Informatics
Author : Sujata Dash,Biswa Ranjan Acharya,Mamta Mittal,Ajith Abraham,Arpad Kelemen
Publisher : Springer Nature
Release Date : 2019-11-14
Category : Technology & Engineering
Total pages :383
GET BOOK

This book presents a collection of state-of-the-art approaches for deep-learning-based biomedical and health-related applications. The aim of healthcare informatics is to ensure high-quality, efficient health care, and better treatment and quality of life by efficiently analyzing abundant biomedical and healthcare data, including patient data and electronic health records (EHRs), as well as lifestyle problems. In the past, it was common to have a domain expert to develop a model for biomedical or health care applications; however, recent advances in the representation of learning algorithms (deep learning techniques) make it possible to automatically recognize the patterns and represent the given data for the development of such model. This book allows new researchers and practitioners working in the field to quickly understand the best-performing methods. It also enables them to compare different approaches and carry forward their research in an important area that has a direct impact on improving the human life and health. It is intended for researchers, academics, industry professionals, and those at technical institutes and R&D organizations, as well as students working in the fields of machine learning, deep learning, biomedical engineering, health informatics, and related fields.

Biomedical Informatics

Biomedical Informatics
Author : Vadim Astakhov
Publisher : Unknown
Release Date : 2009
Category : Bioinformatics
Total pages :270
GET BOOK

"In recent decades, bioinformatics has emerged as a dynamic area producing a wide spectrum of new approaches and playing an important role in modern biotechnological development. This book provides an overview of novel cyberinfrastructures which are currently under development in various biomedical centers around the world. The first three chapters demonstrate various architectures for large-scale collaboration which integrate scientific accord across multiple centers. The next five chapters demonstrate modern approaches currently used in various areas of bioinformatics. The final four chapters illustrate the software challenges and strategies to resolve those challenges for large-scale biomedical informatics projects" - p. v.

Methods, Models, and Computation for Medical Informatics

Methods, Models, and Computation for Medical Informatics
Author : Gangopadhyay, Aryya
Publisher : IGI Global
Release Date : 2012-12-31
Category : Medical
Total pages :345
GET BOOK

Regular developments in technology continue to influence the medical and healthcare fields as they interact with information and computer sciences by methods of acquisition and the storage and retrieval of information. Methods, Models, and Computation for Medical Informatics is a comprehensive collection of research on computational capabilities, prototypes, and algorithms, as well as application in the areas of nursing, clinical care, public health, biomedical research, and much more. This book provides a better understanding of the models and methods used in the field of medicine for researchers, practitioners, and medical professionals alike.

Health Informatics Data Analysis

Health Informatics Data Analysis
Author : Dong Xu,May D. Wang,Fengfeng Zhou,Yunpeng Cai
Publisher : Springer
Release Date : 2017-09-08
Category : Medical
Total pages :210
GET BOOK

This book provides a comprehensive overview of different biomedical data types, including both clinical and genomic data. Thorough explanations enable readers to explore key topics ranging from electrocardiograms to Big Data health mining and EEG analysis techniques. Each chapter offers a summary of the field and a sample analysis. Also covered are telehealth infrastructure, healthcare information association rules, methods for mass spectrometry imaging, environmental biodiversity, and the global nonlinear fitness function for protein structures. Diseases are addressed in chapters on functional annotation of lncRNAs in human disease, metabolomics characterization of human diseases, disease risk factors using SNP data and Bayesian methods, and imaging informatics for diagnostic imaging marker selection. With the exploding accumulation of Electronic Health Records (EHRs), there is an urgent need for computer-aided analysis of heterogeneous biomedical datasets. Biomedical data is notorious for its diversified scales, dimensions, and volumes, and requires interdisciplinary technologies for visual illustration and digital characterization. Various computer programs and servers have been developed for these purposes by both theoreticians and engineers. This book is an essential reference for investigating the tools available for analyzing heterogeneous biomedical data. It is designed for professionals, researchers, and practitioners in biomedical engineering, diagnostics, medical electronics, and related industries.

Principles of Biomedical Informatics

Principles of Biomedical Informatics
Author : Ira J. Kalet, PhD
Publisher : Academic Press
Release Date : 2013-09-26
Category : Computers
Total pages :708
GET BOOK

This second edition of a pioneering technical work in biomedical informatics provides a very readable treatment of the deep computational ideas at the foundation of the field. Principles of Biomedical Informatics, 2nd Edition is radically reorganized to make it especially useable as a textbook for courses that move beyond the standard introductory material. It includes exercises at the end of each chapter, ideas for student projects, and a number of new topics, such as: • tree structured data, interval trees, and time-oriented medical data and their use • On Line Application Processing (OLAP), an old database idea that is only recently coming of age and finding surprising importance in biomedical informatics • a discussion of nursing knowledge and an example of encoding nursing advice in a rule-based system • X-ray physics and algorithms for cross-sectional medical image reconstruction, recognizing that this area was one of the most central to the origin of biomedical computing • an introduction to Markov processes, and • an outline of the elements of a hospital IT security program, focusing on fundamental ideas rather than specifics of system vulnerabilities or specific technologies. It is simultaneously a unified description of the core research concept areas of biomedical data and knowledge representation, biomedical information access, biomedical decision-making, and information and technology use in biomedical contexts, and a pre-eminent teaching reference for the growing number of healthcare and computing professionals embracing computation in health-related fields. As in the first edition, it includes many worked example programs in Common LISP, the most powerful and accessible modern language for advanced biomedical concept representation and manipulation. The text also includes humor, history, and anecdotal material to balance the mathematically and computationally intensive development in many of the topic areas. The emphasis, as in the first edition, is on ideas and methods that are likely to be of lasting value, not just the popular topics of the day. Ira Kalet is Professor Emeritus of Radiation Oncology, and of Biomedical Informatics and Medical Education, at the University of Washington. Until retiring in 2011 he was also an Adjunct Professor in Computer Science and Engineering, and Biological Structure. From 2005 to 2010 he served as IT Security Director for the University of Washington School of Medicine and its major teaching hospitals. He has been a member of the American Medical Informatics Association since 1990, and an elected Fellow of the American College of Medical Informatics since 2011. His research interests include simulation systems for design of radiation treatment for cancer, software development methodology, and artificial intelligence applications to medicine, particularly expert systems, ontologies and modeling. Develops principles and methods for representing biomedical data, using information in context and in decision making, and accessing information to assist the medical community in using data to its full potential Provides a series of principles for expressing biomedical data and ideas in a computable form to integrate biological, clinical, and public health applications Includes a discussion of user interfaces, interactive graphics, and knowledge resources and reference material on programming languages to provide medical informatics programmers with the technical tools to develop systems

Methods in Biomedical Informatics

Methods in Biomedical Informatics
Author : Indra Neil Sarkar
Publisher : Academic Press
Release Date : 2013-09-03
Category : Computers
Total pages :592
GET BOOK

Beginning with a survey of fundamental concepts associated with data integration, knowledge representation, and hypothesis generation from heterogeneous data sets, Methods in Biomedical Informatics provides a practical survey of methodologies used in biological, clinical, and public health contexts. These concepts provide the foundation for more advanced topics like information retrieval, natural language processing, Bayesian modeling, and learning classifier systems. The survey of topics then concludes with an exposition of essential methods associated with engineering, personalized medicine, and linking of genomic and clinical data. Within an overall context of the scientific method, Methods in Biomedical Informatics provides a practical coverage of topics that is specifically designed for: (1) domain experts seeking an understanding of biomedical informatics approaches for addressing specific methodological needs; or (2) biomedical informaticians seeking an approachable overview of methodologies that can be used in scenarios germane to biomedical research. Contributors represent leading biomedical informatics experts: individuals who have demonstrated effective use of biomedical informatics methodologies in the real-world, high-quality biomedical applications Material is presented as a balance between foundational coverage of core topics in biomedical informatics with practical "in-the-trenches" scenarios. Contains appendices that function as primers on: (1) Unix; (2) Ruby; (3) Databases; and (4) Web Services.

Optimization and Data Analysis in Biomedical Informatics

Optimization and Data Analysis in Biomedical Informatics
Author : Panos M. Pardalos,Thomas F. Coleman,Petros Xanthopoulos
Publisher : Springer Science & Business Media
Release Date : 2012-08-15
Category : Mathematics
Total pages :200
GET BOOK

​This volume covers some of the topics that are related to the rapidly growing field of biomedical informatics. In June 11-12, 2010 a workshop entitled ‘Optimization and Data Analysis in Biomedical Informatics’ was organized at The Fields Institute. Following this event invited contributions were gathered based on the talks presented at the workshop, and additional invited chapters were chosen from world’s leading experts. In this publication, the authors share their expertise in the form of state-of-the-art research and review chapters, bringing together researchers from different disciplines and emphasizing the value of mathematical methods in the areas of clinical sciences. This work is targeted to applied mathematicians, computer scientists, industrial engineers, and clinical scientists who are interested in exploring emerging and fascinating interdisciplinary topics of research. It is designed to further stimulate and enhance fruitful collaborations between scientists from different disciplines.​

Handbook of Evaluation Methods for Health Informatics

Handbook of Evaluation Methods for Health Informatics
Author : Jytte Brender McNair
Publisher : Elsevier
Release Date : 2006-01-17
Category : Computers
Total pages :368
GET BOOK

The Handbook of Evaluation Methods for Health Informatics provides a complete compendium of methods for evaluation of IT-based systems and solutions within healthcare. Emphasis is entirely on assessment of the IT-system within its organizational environment. The author provides a coherent and complete assessment of methods addressing interactions with and effects of technology at the organizational, psychological, and social levels. It offers an explanation of the terminology and theoretical foundations underlying the methodological analysis presented here. The author carefully guides the reader through the process of identifying relevant methods corresponding to specific information needs and conditions for carrying out the evaluation study. The Handbook takes a critical view by focusing on assumptions for application, tacit built-in perspectives of the methods as well as their perils and pitfalls. Collects a number of evaluation methods of medical informatics Addresses metrics and measures Includes an extensive list of anotated references, case studies, and a list of useful Web sites

Biomedical Informatics

Biomedical Informatics
Author : Edward H. Shortliffe,James J. Cimino
Publisher : Springer Science & Business Media
Release Date : 2013-12-02
Category : Medical
Total pages :965
GET BOOK

The practice of modern medicine and biomedical research requires sophisticated information technologies with which to manage patient information, plan diagnostic procedures, interpret laboratory results, and carry out investigations. Biomedical Informatics provides both a conceptual framework and a practical inspiration for this swiftly emerging scientific discipline at the intersection of computer science, decision science, information science, cognitive science, and biomedicine. Now revised and in its third edition, this text meets the growing demand by practitioners, researchers, and students for a comprehensive introduction to key topics in the field. Authored by leaders in medical informatics and extensively tested in their courses, the chapters in this volume constitute an effective textbook for students of medical informatics and its areas of application. The book is also a useful reference work for individual readers needing to understand the role that computers can play in the provision of clinical services and the pursuit of biological questions. The volume is organized so as first to explain basic concepts and then to illustrate them with specific systems and technologies.

Translational Bioinformatics and Systems Biology Methods for Personalized Medicine

Translational Bioinformatics and Systems Biology Methods for Personalized Medicine
Author : Qing Yan
Publisher : Academic Press
Release Date : 2017-04-18
Category : Computers
Total pages :182
GET BOOK

Translational Bioinformatics and Systems Biology Methods for Personalized Medicine introduces integrative approaches in translational bioinformatics and systems biology to support the practice of personalized, precision, predictive, preventive, and participatory medicine. Through the description of important cutting-edge technologies in bioinformatics and systems biology, readers may gain an essential understanding of state-of-the-art methodologies. The book discusses topics such as the challenges and tasks in translational bioinformatics; pharmacogenomics, systems biology, and personalized medicine; and the applicability of translational bioinformatics for biomarker discovery, epigenomics, and molecular dynamics. It also discusses data integration and mining, immunoinformatics, and neuroinformatics. With broad coverage of both basic scientific and clinical applications, this book is suitable for a wide range of readers who may not be scientists but who are also interested in the practice of personalized medicine. Introduces integrative approaches in translational bioinformatics and systems biology to support the practice of personalized, precision, predictive, preventive, and participatory medicine Presents a problem-solving oriented methodology to deal with practical problems in various applications Covers both basic scientific and clinical applications in order to enhance the collaboration between researchers and clinicians Brings integrative and multidisciplinary approaches to bridge the gaps among various knowledge domains in the field

Translational Biomedical Informatics

Translational Biomedical Informatics
Author : Bairong Shen,Haixu Tang,Xiaoqian Jiang
Publisher : Springer
Release Date : 2016-10-31
Category : Science
Total pages :332
GET BOOK

This book introduces readers to essential methods and applications in translational biomedical informatics, which include biomedical big data, cloud computing and algorithms for understanding omics data, imaging data, electronic health records and public health data. The storage, retrieval, mining and knowledge discovery of biomedical big data will be among the key challenges for future translational research. The paradigm for precision medicine and healthcare needs to integratively analyze not only the data at the same level – e.g. different omics data at the molecular level – but also data from different levels – the molecular, cellular, tissue, clinical and public health level. This book discusses the following major aspects: the structure of cross-level data; clinical patient information and its shareability; and standardization and privacy. It offers a valuable guide for all biologists, biomedical informaticians and clinicians with an interest in Precision Medicine Informatics.