January 19, 2021

Download Ebook Free Microbial Electrochemical Technology

Microbial Electrochemical Technologies

Microbial Electrochemical Technologies
Author : Sonia M. Tiquia-Arashiro,Deepak Pant
Publisher : CRC Press
Release Date : 2020-01-06
Category : Science
Total pages :508
GET BOOK

This book encompasses the most updated and recent account of research and implementation of Microbial Electrochemical Technologies (METs) from pioneers and experienced researchers in the field who have been working on the interface between electrochemistry and microbiology/biotechnology for many years. It provides a holistic view of the METs, detailing the functional mechanisms, operational configurations, influencing factors governing the reaction process and integration strategies. The book not only provides historical perspectives of the technology and its evolution over the years but also the most recent examples of up-scaling and near future commercialization, making it a must-read for researchers, students, industry practitioners and science enthusiasts. Key Features: Introduces novel technologies that can impact the future infrastructure at the water-energy nexus. Outlines methodologies development and application of microbial electrochemical technologies and details out the illustrations of microbial and electrochemical concepts. Reviews applications across a wide variety of scales, from power generation in the laboratory to approaches. Discusses techniques such as molecular biology and mathematical modeling; the future development of this promising technology; and the role of the system components for the implementation of bioelectrochemical technologies for practical utility. Explores key challenges for implementing these systems and compares them to similar renewable energy technologies, including their efficiency, scalability, system lifetimes, and reliability.

Biomass, Biofuels, Biochemicals

Biomass, Biofuels, Biochemicals
Author : S.Venkata Mohan,Ashok Pandey,Sunita Varjani
Publisher : Elsevier
Release Date : 2018-09-28
Category : Technology & Engineering
Total pages :1146
GET BOOK

Biomass, Biofuels, Biochemicals encompasses the potential of microbial electrochemical technologies, delineating their role in developing a technology for abating environmental crisis and enabling transformation to a sustainable future. The book provides new and futuristic methods for bioelectrogenesis, multiple product synthesis, waste remediation strategies, and electromicrobiology generation which are widely essential to individuals from industry, marketing, activists, writers, etc. In addition, it provides essential knowledge transfer to researchers, students and science enthusiasts on Microbial Electrochemical Technologies, detailing the functional mechanisms employed, various operational configurations, influencing factors governing the reaction progress and integration strategies. With these key topics and features, the book generates interest among a wide range of people related to renewable energy generation and sustainable environmental research. Depicts the holistic view of the multiple applications of Microbial Electrochemical Technologies (METs) in a unified comprehensible manner Provides strategic integrations of MET with various bioprocesses that are essential in establishing a circular biorefinery Widens the scope of the existing technologies, giving up-to date, state-of-the-art information and knowledge on research and commercialization Contains topics that are lucid, providing interdisciplinary knowledge on the environment, molecular biology, engineering, biotechnology, microbiology and economic aspects Includes more than 75 illustrations, figures, diagrams, flow charts, and tables for further study

Microbial Electrochemical and Fuel Cells

Microbial Electrochemical and Fuel Cells
Author : Keith Scott,Eileen Hao Yu
Publisher : Woodhead Publishing
Release Date : 2015-11-25
Category : Technology & Engineering
Total pages :410
GET BOOK

Microbial Electrochemical and Fuel Cells: Fundamentals and Applications contains the most updated information on bio-electrical systems and their ability to drive an electrical current by mimicking bacterial interactions found in nature to produce a small amount of power. One of the most promising features of the microbial fuel cell is its application to generate power from wastewater, and its use in the treatment of water to remove contaminants, making it a very sustainable source of power generation that can feasibly find application in rural areas where providing more conventional sources of power is often difficult. The book explores, in detail, both the technical aspects and applications of this technology, and was written by an international team of experts in the field who provide an introduction to microbial fuel cells that looks at their electrochemical principles and mechanisms, explains the materials that can be used for the various sections of the fuel cells, including cathode and anode materials, and provides key analysis of microbial fuel cell performance looking at their usage in hydrogen production, waste treatment, and sensors, amongst other applications. Includes coverage of the types and principles of electrochemical cells Provides information on the construction of fuel cells and appropriate materials Presents the latest on this renewable source of energy and the process for the treatment of waste water

Biomass, Biofuels, Biochemicals

Biomass, Biofuels, Biochemicals
Author : Sudhir P. Singh,Ashok Pandey,Reeta Rani Singhania,Christian Larroche,Zhi Li
Publisher : Elsevier
Release Date : 2020-04-03
Category : Technology & Engineering
Total pages :472
GET BOOK

Advances in Enzyme Catalysis and Technologies intends to provide the basic structural and functional descriptions, and classification of enzymes. The scientific information related to the recombinant enzyme modifications, discovery of novel enzymes and development of synthetic enzymes are also presented. The translational aspects of enzyme catalysis and bioprocess technologies are illustrated, by emphasizing the current requirements and future perspectives of industrial biotechnology. Several case studies are included on enzymes for biofuels application, micro algal biorefineries, high-value bioactive molecules production and enzymes for environmental processes, such as enzymatic bioprocessing for functional food development, biocatalytic technologies for the production of functional sweetener, etc. Provides a conceptual understanding of enzyme catalysis, enzyme engineering, discovery of novel enzymes, and technology perspectives Includes comprehensive information about the inventions and advancement in enzyme system development for biomass processing and functional food developmental aspects Gives an updated reference for education and understanding of enzyme technology

Bioelectrochemical Systems

Bioelectrochemical Systems
Author : Korneel Rabaey
Publisher : IWA Publishing
Release Date : 2010
Category : Science
Total pages :488
GET BOOK

In the context of wastewater treatment, Bioelectrochemical Systems (BESs) have gained considerable interest in the past few years, and several BES processes are on the brink of application to this area. This book, written by a large number of world experts in the different sub-topics, describes the different aspects and processes relevant to their development. Bioelectrochemical Systems (BESs) use micro-organisms to catalyze an oxidation and/or reduction reaction at an anodic and cathodic electrode respectively. Briefly, at an anode oxidation of organic and inorganic electron donors can occur. Prime examples of such electron donors are waste organics and sulfides. At the cathode, an electron acceptor such as oxygen or nitrate can be reduced. The anode and the cathode are connected through an electrical circuit. If electrical power is harvested from this circuit, the system is called a Microbial Fuel Cell; if electrical power is invested, the system is called a Microbial Electrolysis Cell. The overall framework of bio-energy and bio-fuels is discussed. A number of chapters discuss the basics - microbiology, microbial ecology, electrochemistry, technology and materials development. The book continues by highlighting the plurality of processes based on BES technology already in existence, going from wastewater based reactors to sediment based bio-batteries. The integration of BESs into existing water or process lines is discussed. Finally, an outlook is provided of how BES will fit within the emerging biorefinery area.

Progress and Recent Trends in Microbial Fuel Cells

Progress and Recent Trends in Microbial Fuel Cells
Author : Patit Paban Kundu,Kingshuk Dutta
Publisher : Elsevier
Release Date : 2018-06-07
Category : Technology & Engineering
Total pages :464
GET BOOK

Progress and Recent Trends in Microbial Fuel Cells provides an in-depth analysis of the fundamentals, working principles, applications and advancements (including commercialization aspects) made in the field of Microbial Fuel Cells research, with critical analyses and opinions from experts around the world. Microbial Fuel cell, as a potential alternative energy harnessing device, has been progressing steadily towards fruitful commercialization. Involvements of electrolyte membranes and catalysts have been two of the most critical factors toward achieving this progress. Added applications of MFCs in areas of bio-hydrogen production and wastewater treatment have made this technology extremely attractive and important. . Reviews and compares MFCs with other alternative energy harnessing devices, particularly in comparison to other fuel cells. Analyses developments of electrolyte membranes, electrodes, catalysts and biocatalysts as critical components of MFCs, responsible for their present and future progress. Includes commercial aspects of MFCs in terms of (i) generation of electricity, (ii) microbial electrolysis cell, (iii) microbial desalination cell, and (iv) wastewater and sludge treatment.

Electrochemically Active Microorganisms

Electrochemically Active Microorganisms
Author : Yong Xiao,Feng Zhao,Haoyi Cheng
Publisher : Frontiers Media SA
Release Date : 2018-11-14
Category :
Total pages :218
GET BOOK

Microbial electrochemical systems (MESs, also known as bioelectrochemical systems (BESs) are promising technologies for energy and products recovery coupled with wastewater treatment, and have attracted increasing attention. Many studies have been conducted to expand the application of MESs for contaminants degradation and bioremediation, and increase the efficiency of electricity production by optimizing architectural structure of MESs, developing new electrode materials, etc. However, one of the big challenges for researchers to overcome, before MESs can be used commercially, is to improve the performance of the biofilm on electrodes so that ‘electron transfer’ can be enhanced. This would lead to greater production of electricity, energy or other products. Electrochemically active microorganisms (EAMs) are a group of microorganisms which are able to release electrons from inside their cells to an electrode or accept electrons from an electron donor. The way in which EAMs do this is called ‘extracellular electron transfer’ (EET). So far, two EET mechanisms have been identified: direct electron transfer from microorganisms physically attached to an electrode, and indirect electron transfer from microorganisms that are not physically attached to an electrode. 1) Direct electron transfer between microorganisms and electrode can occur in two ways: a) when there is physical contact between outer membrane structures of the microbial cell and the surface of the electrode, b) when electrons are transferred between the microorganism and the electrode through tiny projections (called pili or nanowires) that extend from the outer membrane of the microorganism and attach themselves to the electrode. 2) Indirect transfer of electrons from the microorganisms to an electrode occurs via long-range electron shuttle compounds that may be naturally present (in wastewater, for example), or may be produced by the microorganisms themselves. The electrochemically active biofilm, which degrades contaminants and produces electricity in MESs, consists of diverse community of EAMs and other microorganisms. However, up to date only a few EAMs have been identified, and most studies on EET have focused on the two model species of Shewanella oneidensis and Geobacter sulfurreducens.

Exam Prep for: Microbial Electrochemical Technologies

Exam Prep for: Microbial Electrochemical Technologies
Author : Anonim
Publisher : Unknown
Release Date : 2021
Category :
Total pages :129
GET BOOK

Technology and Application of Microbial Fuel Cells

Technology and Application of Microbial Fuel Cells
Author : Chin-Tsan Wang
Publisher : BoD – Books on Demand
Release Date : 2014-07-09
Category : Technology & Engineering
Total pages :98
GET BOOK

Faced with the upcoming serious deficiency of energy, food and water, along with inevitable environmental pollution, much related research has been on the upsurge because Microbial Fuel Cells (MFCs) seem to be one of the solutions to these concerns in the future. The aim of this book is to describe and consider some concepts regarding MFC application designs for interested colleagues. Five topics regarding the technology of flow control, biocatalysts, biofilms, removal of chemical oxygen demand and biochemical fields are addressed in the book. Considering the low power density and short life span of MFCs, there has been a dramatic increase in funding and research that has led to a greater understanding of the fundamental science behind MFC study. This is driving significant improvements in both the reliability and efficiency of MFCs and hence their future use.

Exam Prep for: Microbial Electrochemical Technologies

Exam Prep for: Microbial Electrochemical Technologies
Author : Anonim
Publisher : Unknown
Release Date : 2021
Category :
Total pages :129
GET BOOK

Integrated Microbial Fuel Cells for Wastewater Treatment

Integrated Microbial Fuel Cells for Wastewater Treatment
Author : Rouzbeh Abbassi,Asheesh Kumar Yadav,Faisal Khan,Vikram Garaniya
Publisher : Butterworth-Heinemann
Release Date : 2020-04-27
Category : Business & Economics
Total pages :392
GET BOOK

Current wastewater treatment technologies are not sustainable simply due to their high operational costs and process inefficiency. Integrated Microbial Fuel Cells for Wastewater Treatment is intended for professionals who are searching for an innovative method to improve the efficiencies of wastewater treatment processes by exploiting the potential of Microbial Fuel Cells (MFCs) technology. The book is broadly divided into four sections. It begins with an overview of the "state of the art" bioelectrochemical systems (BESs) as well as the fundamentals of MFC technology and its potential to enhance wastewater treatment efficiencies and reduce electricity generation cost. In section two, discusses the integration, installation, and optimization of MFC into conventional wastewater treatment processes such as activated sludge process, lagoons, constructed wetlands, and membrane bioreactors. Section three outlines integrations of MFCs into other wastewater processes. The final section provides explorative studies of MFC integrated systems for large scale wastewater treatment and the challenges which are inherent in the upscaling process. Clearly describes the latest techniques for integrating MFC into traditional wastewater treatment processes such as activated sludge process, lagoons, constructed wetlands, and membrane bioreactors Discusses the fundamentals of bioelectrochemical systems for degrading the contaminants from the municipal and industrial wastewater Covers methods for the optimization of integrated systems

Microbial Fuel Cell

Microbial Fuel Cell
Author : Debabrata Das
Publisher : Springer
Release Date : 2017-12-01
Category : Technology & Engineering
Total pages :506
GET BOOK

This book represents a novel attempt to describe microbial fuel cells (MFCs) as a renewable energy source derived from organic wastes. Bioelectricity is usually produced through MFCs in oxygen-deficient environments, where a series of microorganisms convert the complex wastes into electrons via liquefaction through a cascade of enzymes in a bioelectrochemical process. The book provides a detailed description of MFC technologies and their applications, along with the theories underlying the electron transfer mechanisms, the biochemistry and the microbiology involved, and the material characteristics of the anode, cathode and separator. It is intended for a broad audience, mainly undergraduates, postgraduates, energy researchers, scientists working in industry and at research organizations, energy specialists, policymakers, and anyone else interested in the latest developments concerning MFCs.

Bioelectrosynthesis

Bioelectrosynthesis
Author : Falk Harnisch,Dirk Holtmann
Publisher : Springer
Release Date : 2019-01-04
Category : Science
Total pages :420
GET BOOK

This volume discusses both the latest experimental research in bioelectrosynthesis and current applications. Beginning with an introduction into the “electrification of biotechnology” as well as the underlying fundamentals, the volume then discusses a wide range of topics based on the interfacing of biotechnological and electrochemical reaction steps. It includes contributions on the different aspects of bioelectrochemical applications for synthesis purposes, i.e. the production of fine and platform chemicals based on enzymatically or microbially catalyzed reactions driven by electric energy. The volume finishes with a summary and outlook chapter which gives an overview of the current status of the field and future perspectives. Edited by experts in the field, and authored by a wide range of international researchers, this volume assesses how research from today’s lab bench can be developed into industrial applications, and is of interest to researchers in academia and industry.

New Technologies for Electrochemical Applications

New Technologies for Electrochemical Applications
Author : Mu. Naushad,Saravanan Rajendran,Abdullah M. Al-Enizi
Publisher : CRC Press
Release Date : 2020-02-10
Category : Science
Total pages :271
GET BOOK

The field of electrochemistry is exploring beyond its basic principles to innovation. New Technologies for Electrochemical Applications presents advancements in electrochemical processes, materials, and technology for electrochemical power sources such as batteries, supercapacitors, fuel cells, hydrogen storage and solar cells. It also examines various environmental applications such as photo electrochemistry, photosynthesis, and coating. Organized to give readers an overview of the current field in electrochemical applications, this book features a historical timeline of advancements and chapters devoted to the topics of organic material and conducting polymers for electrochemical purposes. Established experts in the field detail state-of-the-art materials in biosensors, immunosensors, and electrochemical DNA. This edited reference is a valuable resource for graduate and post-graduate students, and researchers in disciplines such as chemistry, physics, electrical engineering and materials science.

Microbial Fuels

Microbial Fuels
Author : Farshad Darvishi Harzevili,Ir Serge Hiligsmann
Publisher : CRC Press
Release Date : 2017-09-18
Category : Technology & Engineering
Total pages :556
GET BOOK

The book will highlight major trends and developments in the field of microbial fuels, with contributions from a number of highly experienced researchers. It will serve as a comprehensive reference for industrial stakeholders, scientists, researchers and graduate students interested in microbial fuels. The aims of this work are to present the technologies and perspectives taking into account different socio-economical contexts. A specific chapter will focus on the general perspectives of microbial fuels for low-income and emerging countries.