November 23, 2020

Download Ebook Free Microsupercapacitors

Nanomaterials for Sustainable Energy

Nanomaterials for Sustainable Energy
Author : Quan Li
Publisher : Springer
Release Date : 2016-05-12
Category : Science
Total pages :590
GET BOOK

This book presents the unique mechanical, electrical, and optical properties of nanomaterials, which play an important role in the recent advances of energy-related applications. Different nanomaterials have been employed in energy saving, generation, harvest, conversion, storage, and transport processes very effectively and efficiently. Recent progress in the preparation, characterization and usage of 1D, 2D nanomaterials and hybrid architectures for energy-related applications and relevant technologies and devices, such as solar cells, thermoelectronics, piezoelectronics, solar water splitting, hydrogen production/storage, fuel cells, batteries, and supercapacitors is covered. Moreover, the book also highlights novel approaches in nanomaterials design and synthesis and evaluating materials sustainability issues. Contributions from active and leading experts regarding important aspects like the synthesis, assembly, and properties of nanomaterials for energy-related applications are compiled into a reference book. As evident from the diverse topics, the book will be very valuable to researchers working in the intersection of physics, chemistry, biology, materials science and engineering. It may set the standard and stimulates future developments in this rapidly emerging fertile frontier of nanomaterials for energy.

Flexible and Stretchable Electronics

Flexible and Stretchable Electronics
Author : Run-Wei Li,Gang Liu
Publisher : CRC Press
Release Date : 2019-12-11
Category : Science
Total pages :392
GET BOOK

With the recently well developed areas of Internet of Thing, consumer wearable gadgets and artificial intelligence, flexible and stretchable electronic devices have spurred great amount of interest from both the global scientific and industrial communities. As an emerging technology, flexible and stretchable electronics requires the scale-span fabrication of devices involving nano-features, microstructures and macroscopic large area manufacturing. The key factor behind covers the organic, inorganic and nano materials that exhibit completely different mechanical and electrical properties, as well as the accurate interfacial control between these components. Based on the fusion of chemistry, physics, biology, materials science and information technology, this review volume will try to offer a timely and comprehensive overview on the flexible and stretchable electronic materials and devices. The book will cover the working principle, materials selection, device fabrication and applications of electronic components of transistors, solar cells, memories, sensors, supercapacitors, circuits and etc.

Graphene-based Energy Devices

Graphene-based Energy Devices
Author : A. Rashid bin Mohd Yusoff
Publisher : John Wiley & Sons
Release Date : 2015-02-17
Category : Technology & Engineering
Total pages :464
GET BOOK

This first book dedicated to the topic provides an up-to-date account of the many opportunities graphene offers for robust, workable energy generation and storage devices. Following a brief overview of the fundamentals of graphene, including the main synthesis techniques, characterization methods and properties, the first part goes on to deal with graphene for energy storage applications, such as lithium-ion batteries, supercapacitors and hydrogen storage. The second part is concerned with graphene-based energy-generation devices, in particular conventional as well as microbial and enzymatic fuel cells, with chapters on graphene photovoltaics rounding off the book. Throughout, device architectures are not only discussed on a laboratory scale, but also ways for upscaling to an industrial level, including manufacturing processes and quality control. By bridging academic research and industrial development this is invaluable reading for materials scientists, physical chemists, electrochemists, solid state physicists, and those working in the electrotechnical industry.

Electrochemical Materials Design for Micro-Supercapacitors

Electrochemical Materials Design for Micro-Supercapacitors
Author : Can Liu
Publisher : Unknown
Release Date : 2016
Category : Technology
Total pages :129
GET BOOK

Micro-supercapacitors (m-SC) arise from the demand of developing micro-power system for MEMS devices, attracting much research interest in recent years. As m-SC has to achieve high areal energy and power densities, the volumetric capacitance and the rate capability of the electrode materials have become the most important concern. This review compares the intrinsic electrochemical properties of the state-of-art electrode materials for m-SC, reporting the recent advances in the three types of electrode materials. For carbon electrode materials, two developing trends are identified: one is to enhance volumetric capacitance through a proper film fabrication process, while the other one is to further promote its fast response rate by making open-structured devices. For pseudocapacitive oxides, in order to achieve better rate capability and cyclability, the relationship between the electrochemical property and the structure is worth further exploration. As an example, the composition, microstructure, and morphology of the molybdenum oxide film were optimized to realize superior electrochemical performance as an electrode material for m-SC. Architecture design is another important factor for m-SC. In-plane interdigital architectures have proven its success to fabricate fast response devices. Further study on the interplay effect between such architecture and pseudocapacitive materials is in need.

On-chip Micro-supercapacitors Based on Nano-structured Carbon Materials

On-chip Micro-supercapacitors Based on Nano-structured Carbon Materials
Author : Peihua Huang
Publisher : Unknown
Release Date : 2013
Category :
Total pages :157
GET BOOK

The increasing number of functions in portable electronic devices requires more and more energy and power within a limited space. Li-ion thin film or so-called micro-batteries are the current solution for power supply. Drawbacks of these storage elements are poor power performance with limited life-span and temperature range. Carbon-based micro- supercapacitors, on the other hand, are able to deliver energy in short time, thus offering high power capability, to work at low temperature and they present an unlimited life-span. This thesis proposes several carbon-based micro-supercapacitors, to be integrated on a silicon substrate together with other electronics components or sensors. They are foreseen as a potential replacement or complement of Li-ion micro-batteries to enhance the total performance of the whole power source system. The thesis work is mainly focused on adapted materials and technologies for enabling micro-supercapacitors realization. Two types of on-chip micro-supercapacitors with planar interdigitated electrodes configuration were developed: one prepared from Electrophoretic deposition (EPD) and its combination of different carbon materials and different types of electrolytes, the other from patterned titanium or silicon carbide derived carbon film (TiC-CDC or SiC-CDC) on Si chip with different microfabrication techniques. Onion like carbon-based micro-supercapacitor by EPD shows high power delivery (scan rate up to 100V/s) in organic electrolyte, and high temperature range (-50 °C - 80 °C) in a eutectic mixture of ionic liquids. Different techniques for patterning carbide films have been developed to fabricate a CDC based micro- supercapacitor: reactive ion etching (RIE) or focused ion beam (FIB). TiC-CDC film based micro-supercapacitors show promising preliminary results. The developed technologies pave the way to a full and effective integration of micro-size energy storage devices on-chip.

Inkjet Printing of Graphene-based Microsupercapacitors for Miniaturized Energy Storage Applications

Inkjet Printing of Graphene-based Microsupercapacitors for Miniaturized Energy Storage Applications
Author : Szymon Sollami Delekta
Publisher : Unknown
Release Date : 2019
Category :
Total pages :129
GET BOOK

Reduced Graphene Oxide-Based Microsupercapacitors

Reduced Graphene Oxide-Based Microsupercapacitors
Author : Zhi Jiang
Publisher : Unknown
Release Date : 2017
Category : Science
Total pages :129
GET BOOK

Recent development in miniaturized electronic devices has been boosting the demand for power sources that are sufficiently thin, flexible/bendable, and even tailorable and can potentially be integrated in a package with other electronic components. Reduced graphene oxide can be a promising electrode material for miniaturized microsupercapacitors due to their excellent electrical conductivity, high surface-to-volume ratio, outstanding intrinsic electrochemical double-layer capacitance, and facile production in large scale and low cost. Therefore, the routes to produce high-quality reduced graphene oxide as electrode materials, along with the typical fabrication techniques for miniaturized electrodes, are deliberately discussed in this chapter. Furthermore, breakthroughs in the area of the advanced packaging technology, deciding the electrochemical performance and stability of these miniaturized microsupercapacitors, are highlighted. Lastly, a summary of the overall electrochemical properties and current development of the reported devices is presented progressively to provide insights into the development of novel miniaturized energy storage technologies.

Development of Novel Micro-supercapacitors with High Areal Energy Density and Smart Functions

Development of Novel Micro-supercapacitors with High Areal Energy Density and Smart Functions
Author : Panpan Zhang
Publisher : Unknown
Release Date : 2019
Category :
Total pages :129
GET BOOK

Supercapacitor Design and Applications

Supercapacitor Design and Applications
Author : Zoran Stevic
Publisher : BoD – Books on Demand
Release Date : 2016-11-02
Category : Technology & Engineering
Total pages :190
GET BOOK

In this book, authors investigated asymmetric and symmetric supercapacitor configurations for different electrode materials. Besides the already standard activated carbon (AC), studies were done with other materials and technologies for their preparation and activation. Also, the research info was presented with different electrolytes in order to obtain a higher capacitance and potential window, with as small as possible serial resistance. Achieved high performance enables wide application, and some of the new applications (spacecraft power systems, powering heart pacemakers and wireless sensors) are also described in this book.

Supercapacitors

Supercapacitors
Author : Stanislav Kolisnychenko
Publisher : Trans Tech Publications Ltd
Release Date : 2015-07-31
Category : Technology & Engineering
Total pages :856
GET BOOK

Supercapacitors are widely used in tiny (MEMS) high-tech devices, as well as in advanced energy systems. Practical use of ultracapacitors opens up new horizons in the technology of accumulation, storing and delivery of electrical energy. Modern materials and technologies which are used to create supercapacitors are results of the advanced achievements in the field of fundamental and applied physics and materials science. The special collection “Supercapacitors” consists of papers published by Trans Tech Publications Inc. from 2010 up to 2015 and covers a wide range of advanced achievements in the field of applied research of materials and technologies for manufacturing of supercapacitors and some of their application in different branches of engineering practice. Chapter 1: Materials and Technologies for Creating of Supercapacitors Chapter 2: Modeling and Measurements of Properties of Supercapacitors Chapter 3: Some Examples of Practical Application of Supercapacitors

Nanomaterials for Supercapacitors

Nanomaterials for Supercapacitors
Author : Ling Bing Kong
Publisher : CRC Press
Release Date : 2017-11-22
Category : Technology & Engineering
Total pages :518
GET BOOK

New materials hold the key to fundamental advances in energy conversion and storage, both of which are vital in order to meet the challenge of global warming and the finite nature of fossil fuels. Nanomaterials in particular offer unique properties or combinations of properties as electrodes and electrolytes in a range of energy devices. Supercapacitors have been widely acknowledged to be promising devices for energy storage. This book describes the latest progress in the discovery and development of nanoelectrolytes and nanoelectrodes for supercapacitor applications.

Ultracapacitors

Ultracapacitors
Author : R. P. Deshpande
Publisher : McGraw Hill Professional
Release Date : 2015-03-23
Category : Technology & Engineering
Total pages :448
GET BOOK

Cutting-edge coverage of ultracapacitors and their applications Written by a global expert in the field, this pioneering work discusses ultracapacitors and their applications for short-term electrical energy storage. The book describes different types of ultracapacitors and their classification based on energy storage mechanism and electrode combinations. The characteristics, reliability, cycle life, and properties of ultracapacitors, as well as their manufacturing techniques, are discussed in detail. The book examines various applications of ultracapacitors, including electronics, grid systems, automotive, public transportation, military, and other sectors. Emerging trends are also addressed in this ground-breaking resource. Ultracapacitors covers: Electrochemical capacitors Types of ultracapacitors Ultracapacitor characteristics Ultracapacitor charging Ultracapacitor materials Construction of EC capacitors Ultracapacitor cell balancing and modules Hybrid capacitors Li-ion capacitors Applications in the electronics industry Grid system applications Ultracapacitors in vehicles Bus and rail transport Ultrabattery: advanced battery power Military applications Water desalination Ultracapacitor manufacturers Pseudocapacitors Notes on using ultracapacitors Future scenarios

Electrochemical Energy Conversion and Storage Systems for Future Sustainability

Electrochemical Energy Conversion and Storage Systems for Future Sustainability
Author : Aneeya Kumar Samantara,Satyajit Ratha
Publisher : CRC Press
Release Date : 2020-11-17
Category : Science
Total pages :326
GET BOOK

This new volume discusses new and well-known electrochemical energy harvesting, conversion, and storage techniques. It provides significant insight into the current progress being made in this field and suggests plausible solutions to the future energy crisis along with approaches to mitigate environmental degradation caused by energy generation, production, and storage. Topics in Electrochemical Energy Conversion and Storage Systems for Future Sustainability: Technological Advancements address photoelectrochemical catalysis by ZnO, hydrogen oxidation reaction for fuel cell application, and miniaturized energy storage devices in the form of micro-supercapacitors. The volume looks at the underlying mechanisms and acquired first-hand information on how to overcome some of the critical bottlenecks to achieve long-term and reliable energy solutions. The detailed synthesis processes that have been tried and tested over time through rigorous attempts of many researchers can help in selecting the most effective and economical ways to achieve maximum output and efficiency, without going through time-consuming and complex steps. The theoretical analyses and computational results corroborate the experimental findings for better and reliable energy solutions.

Graphene as Energy Storage Material for Supercapacitors

Graphene as Energy Storage Material for Supercapacitors
Author : Inamuddin
Publisher : Materials Research Forum LLC
Release Date : 2020-01-20
Category : Technology & Engineering
Total pages :284
GET BOOK

The book presents a comprehensive review of graphene-based supercapacitor technology. It focusses on synthesis, characterization, fundamental properties and promising applications of graphene materials and various types of graphene-based composites. The wide range of applications include electric power systems of portable electronics, hybrid-electric vehicles, mobile phones etc. Keywords: Graphene, Energy Storage Materials, Supercapacitors, Micro-Supercapacitors, Self-Healable Supercapacitors, Graphene-Based ZnO Nanocomposites, Defect Engineered Graphene Materials, Electric Power Systems.

Laser‐Induced Graphene

Laser‐Induced Graphene
Author : Ruquan Ye,James M. Tour
Publisher : CRC Press
Release Date : 2020-11-30
Category : Science
Total pages :88
GET BOOK

LIG is a revolutionary technique that uses a common CO2 infrared laser scriber, like the one used in any machine shop, for the direct conversion of polymers into porous graphene under ambient conditions. This technique combines the preparation and patterning of 3D graphene in a single step, without the use of wet chemicals. The ease in the structural engineering and excellent mechanical properties of the 3D graphene obtained have made LIG a versatile technique for applications across many fields. This book compiles cutting-edge research on LIG by different research groups all over the world. It discusses the strategies that have been developed to synthesize and engineer graphene, including controlling its properties such as porosity, composition, and surface characteristics. The authors are pioneers in the discovery and development of LIG and the book will appeal to anyone involved in nanotechnology, chemistry, environmental sciences, and device development, especially those with an interest in the synthesis and applications of graphene-based materials.