May 11, 2021

Download Ebook Free Multicore And GPU Programming

Multicore and GPU Programming

Multicore and GPU Programming
Author : Gerassimos Barlas
Publisher : Morgan Kaufmann
Release Date : 2021-12-15
Category : Computers
Total pages :736
GET BOOK

Multicore and GPU Programming: An Integrated Approach offers broad coverage of the key parallel computing skillsets: multicore CPU programming and manycore "massively parallel" computing. Using threads, OpenMP, MPI, CUDA, and other current tools it teaches the design and development of software capable of taking advantage of today's computing platforms incorporating CPU and GPU hardware and explains how to transition from sequential programming to a parallel computing paradigm. Presenting material refined over more than a decade of teaching parallel computing, author Gerassimos Barlas minimizes the challenge with multiple examples, extensive case studies, and full source code. Using this book, readers can develop programs that run over distributed memory machines using MPI, create multi-threaded applications with either libraries or directives, write optimized applications that balance the workload between available computing resources, and profile and debug programs targeting multicore machines. Comprehensive coverage of all major multicore programming tools, including threads, OpenMP, MPI, and CUDA, with coverage of OpenCL and OpenACC added Demonstrates parallel programming design patterns and examples of how different tools and paradigms can be integrated for superior performance New features in the second edition include the use of the C++14 standard for all sample code, a new chapter on concurrent data structures, and the latest research on load balancing Download source code, examples, and instructor support materials on the book's companion website

Exam Prep for: Multicore and Gpu Programming; An Integrated ...

Exam Prep for: Multicore and Gpu Programming; An Integrated ...
Author : Anonim
Publisher : Unknown
Release Date : 2021
Category :
Total pages :129
GET BOOK

The OpenCL Programming Book

The OpenCL Programming Book
Author : http://www.fixstars.com/en/opencl/book/
Publisher : Fixstars
Release Date : 2021
Category :
Total pages :129
GET BOOK

Parallel Programming

Parallel Programming
Author : Thomas Rauber,Gudula Rünger
Publisher : Springer Science & Business Media
Release Date : 2013-06-13
Category : Computers
Total pages :516
GET BOOK

Innovations in hardware architecture, like hyper-threading or multicore processors, mean that parallel computing resources are available for inexpensive desktop computers. In only a few years, many standard software products will be based on concepts of parallel programming implemented on such hardware, and the range of applications will be much broader than that of scientific computing, up to now the main application area for parallel computing. Rauber and Rünger take up these recent developments in processor architecture by giving detailed descriptions of parallel programming techniques that are necessary for developing efficient programs for multicore processors as well as for parallel cluster systems and supercomputers. Their book is structured in three main parts, covering all areas of parallel computing: the architecture of parallel systems, parallel programming models and environments, and the implementation of efficient application algorithms. The emphasis lies on parallel programming techniques needed for different architectures. For this second edition, all chapters have been carefully revised. The chapter on architecture of parallel systems has been updated considerably, with a greater emphasis on the architecture of multicore systems and adding new material on the latest developments in computer architecture. Lastly, a completely new chapter on general-purpose GPUs and the corresponding programming techniques has been added. The main goal of the book is to present parallel programming techniques that can be used in many situations for a broad range of application areas and which enable the reader to develop correct and efficient parallel programs. Many examples and exercises are provided to show how to apply the techniques. The book can be used as both a textbook for students and a reference book for professionals. The material presented has been used for courses in parallel programming at different universities for many years.

GPU Programming in MATLAB

GPU Programming in MATLAB
Author : Nikolaos Ploskas,Nikolaos Samaras
Publisher : Morgan Kaufmann
Release Date : 2016-08-25
Category : Computers
Total pages :318
GET BOOK

GPU programming in MATLAB is intended for scientists, engineers, or students who develop or maintain applications in MATLAB and would like to accelerate their codes using GPU programming without losing the many benefits of MATLAB. The book starts with coverage of the Parallel Computing Toolbox and other MATLAB toolboxes for GPU computing, which allow applications to be ported straightforwardly onto GPUs without extensive knowledge of GPU programming. The next part covers built-in, GPU-enabled features of MATLAB, including options to leverage GPUs across multicore or different computer systems. Finally, advanced material includes CUDA code in MATLAB and optimizing existing GPU applications. Throughout the book, examples and source codes illustrate every concept so that readers can immediately apply them to their own development. Provides in-depth, comprehensive coverage of GPUs with MATLAB, including the parallel computing toolbox and built-in features for other MATLAB toolboxes Explains how to accelerate computationally heavy applications in MATLAB without the need to re-write them in another language Presents case studies illustrating key concepts across multiple fields Includes source code, sample datasets, and lecture slides

Multicore Computing

Multicore Computing
Author : Sanguthevar Rajasekaran,Lance Fiondella,Mohamed Ahmed,Reda A. Ammar
Publisher : CRC Press
Release Date : 2013-12-12
Category : Computers
Total pages :452
GET BOOK

Every area of science and engineering today has to process voluminous data sets. Using exact, or even approximate, algorithms to solve intractable problems in critical areas, such as computational biology, takes time that is exponential in some of the underlying parameters. Parallel computing addresses this issue and has become affordable with the advent of multicore architectures. However, programming multicore machines is much more difficult due to oddities existing in the architectures. Offering insights into different facets of this area, Multicore Computing: Algorithms, Architectures, and Applications focuses on the architectures, algorithms, and applications of multicore computing. It will help readers understand the intricacies of these architectures and prepare them to design efficient multicore algorithms. Contributors at the forefront of the field cover the memory hierarchy for multicore and manycore processors, the caching strategy Flexible Set Balancing, the main features of the latest SPARC architecture specification, the Cilk and Cilk++ programming languages, the numerical software library Parallel Linear Algebra Software for Multicore Architectures (PLASMA), and the exact multipattern string matching algorithm of Aho-Corasick. They also describe the architecture and programming model of the NVIDIA Tesla GPU, discuss scheduling directed acyclic graphs onto multi/manycore processors, and evaluate design trade-offs among Intel and AMD multicore processors, IBM Cell Broadband Engine, and NVIDIA GPUs. In addition, the book explains how to design algorithms for the Cell Broadband Engine and how to use the backprojection algorithm for generating images from synthetic aperture radar data.

Parallel Programming with OpenACC

Parallel Programming with OpenACC
Author : Rob Farber
Publisher : Newnes
Release Date : 2016-10-14
Category : Computers
Total pages :326
GET BOOK

Parallel Programming with OpenACC is a modern, practical guide to implementing dependable computing systems. The book explains how anyone can use OpenACC to quickly ramp-up application performance using high-level code directives called pragmas. The OpenACC directive-based programming model is designed to provide a simple, yet powerful, approach to accelerators without significant programming effort. Author Rob Farber, working with a team of expert contributors, demonstrates how to turn existing applications into portable GPU accelerated programs that demonstrate immediate speedups. The book also helps users get the most from the latest NVIDIA and AMD GPU plus multicore CPU architectures (and soon for Intel® Xeon PhiTM as well). Downloadable example codes provide hands-on OpenACC experience for common problems in scientific, commercial, big-data, and real-time systems. Topics include writing reusable code, asynchronous capabilities, using libraries, multicore clusters, and much more. Each chapter explains how a specific aspect of OpenACC technology fits, how it works, and the pitfalls to avoid. Throughout, the book demonstrates how the use of simple working examples that can be adapted to solve application needs. Presents the simplest way to leverage GPUs to achieve application speedups Shows how OpenACC works, including working examples that can be adapted for application needs Allows readers to download source code and slides from the book's companion web page

Parallel Computing

Parallel Computing
Author : Barbara Chapman
Publisher : IOS Press
Release Date : 2010-01-01
Category : Computers
Total pages :739
GET BOOK

Parallel computing technologies have brought dramatic changes to mainstream computing; the majority of today's PC's, laptops and even notebooks incorporate multiprocessor chips with up to four processors. Standard components are increasingly combined with GPU's (Graphics Processing Unit), originally designed for high-speed graphics processing, and FPGA's (Free Programmable Gate Array) to build parallel computers with a wide spectrum of high-speed processing functions. The scale of this powerful hardware is limited only by factors such as energy consumption and thermal control However, in addition to hardware factors, the practical use of petascale and exascale machines is often hampered by the difficulty of developing software which will run effectively and efficiently on such architecture This book includes selected and refereed papers, presented at the 2009 international Parallel Computing conference (ParCo2009), which set out to address these problems. It provides a snapshot of the state-of-the-art of parallel computing technologies in hardware, application and software development Areas covered include: numerical algorithms, grid and cloud computing, programming - including GPU and cell programming. The book also includes papers presented at the six mini-symposia held at the conference

Programming Multicore and Many-core Computing Systems

Programming Multicore and Many-core Computing Systems
Author : Sabri Pllana,Fatos Xhafa
Publisher : John Wiley & Sons
Release Date : 2017-02-06
Category : Computers
Total pages :528
GET BOOK

Programming multi-core and many-core computing systems Sabri Pllana, Linnaeus University, Sweden Fatos Xhafa, Technical University of Catalonia, Spain Provides state-of-the-art methods for programming multi-core and many-core systems The book comprises a selection of twenty two chapters covering: fundamental techniques and algorithms; programming approaches; methodologies and frameworks; scheduling and management; testing and evaluation methodologies; and case studies for programming multi-core and many-core systems. Program development for multi-core processors, especially for heterogeneous multi-core processors, is significantly more complex than for single-core processors. However, programmers have been traditionally trained for the development of sequential programs, and only a small percentage of them have experience with parallel programming. In the past, only a relatively small group of programmers interested in High Performance Computing (HPC) was concerned with the parallel programming issues, but the situation has changed dramatically with the appearance of multi-core processors on commonly used computing systems. It is expected that with the pervasiveness of multi-core processors, parallel programming will become mainstream. The pervasiveness of multi-core processors affects a large spectrum of systems, from embedded and general-purpose, to high-end computing systems. This book assists programmers in mastering the efficient programming of multi-core systems, which is of paramount importance for the software-intensive industry towards a more effective product-development cycle. Key features: Lessons, challenges, and roadmaps ahead. Contains real world examples and case studies. Helps programmers in mastering the efficient programming of multi-core and many-core systems. The book serves as a reference for a larger audience of practitioners, young researchers and graduate level students. A basic level of programming knowledge is required to use this book.

Scientific Computing with Multicore and Accelerators

Scientific Computing with Multicore and Accelerators
Author : Jakub Kurzak,David A. Bader,Jack Dongarra
Publisher : CRC Press
Release Date : 2010-12-07
Category : Computers
Total pages :514
GET BOOK

The hybrid/heterogeneous nature of future microprocessors and large high-performance computing systems will result in a reliance on two major types of components: multicore/manycore central processing units and special purpose hardware/massively parallel accelerators. While these technologies have numerous benefits, they also pose substantial performance challenges for developers, including scalability, software tuning, and programming issues. Researchers at the Forefront Reveal Results from Their Own State-of-the-Art Work Edited by some of the top researchers in the field and with contributions from a variety of international experts, Scientific Computing with Multicore and Accelerators focuses on the architectural design and implementation of multicore and manycore processors and accelerators, including graphics processing units (GPUs) and the Sony Toshiba IBM (STI) Cell Broadband Engine (BE) currently used in the Sony PlayStation 3. The book explains how numerical libraries, such as LAPACK, help solve computational science problems; explores the emerging area of hardware-oriented numerics; and presents the design of a fast Fourier transform (FFT) and a parallel list ranking algorithm for the Cell BE. It covers stencil computations, auto-tuning, optimizations of a computational kernel, sequence alignment and homology, and pairwise computations. The book also evaluates the portability of drug design applications to the Cell BE and illustrates how to successfully exploit the computational capabilities of GPUs for scientific applications. It concludes with chapters on dataflow frameworks, the Charm++ programming model, scan algorithms, and a portable intracore communication framework. Explores the New Computational Landscape of Hybrid Processors By offering insight into the process of constructing and effectively using the technology, this volume provides a thorough and practical introduction to the area of hybrid computing. It discusses introductory concepts and simple examples of parallel computing, logical and performance debugging for parallel computing, and advanced topics and issues related to the use and building of many applications.

Python Parallel Programming Cookbook

Python Parallel Programming Cookbook
Author : Giancarlo Zaccone
Publisher : Packt Publishing Ltd
Release Date : 2015-08-26
Category : Computers
Total pages :286
GET BOOK

Master efficient parallel programming to build powerful applications using Python About This Book Design and implement efficient parallel software Master new programming techniques to address and solve complex programming problems Explore the world of parallel programming with this book, which is a go-to resource for different kinds of parallel computing tasks in Python, using examples and topics covered in great depth Who This Book Is For Python Parallel Programming Cookbook is intended for software developers who are well versed with Python and want to use parallel programming techniques to write powerful and efficient code. This book will help you master the basics and the advanced of parallel computing. What You Will Learn Synchronize multiple threads and processes to manage parallel tasks Implement message passing communication between processes to build parallel applications Program your own GPU cards to address complex problems Manage computing entities to execute distributed computational tasks Write efficient programs by adopting the event-driven programming model Explore the cloud technology with DJango and Google App Engine Apply parallel programming techniques that can lead to performance improvements In Detail Parallel programming techniques are required for a developer to get the best use of all the computational resources available today and to build efficient software systems. From multi-core to GPU systems up to the distributed architectures, the high computation of programs throughout requires the use of programming tools and software libraries. Because of this, it is becoming increasingly important to know what the parallel programming techniques are. Python is commonly used as even non-experts can easily deal with its concepts. This book will teach you parallel programming techniques using examples in Python and will help you explore the many ways in which you can write code that allows more than one process to happen at once. Starting with introducing you to the world of parallel computing, it moves on to cover the fundamentals in Python. This is followed by exploring the thread-based parallelism model using the Python threading module by synchronizing threads and using locks, mutex, semaphores queues, GIL, and the thread pool. Next you will be taught about process-based parallelism where you will synchronize processes using message passing along with learning about the performance of MPI Python Modules. You will then go on to learn the asynchronous parallel programming model using the Python asyncio module along with handling exceptions. Moving on, you will discover distributed computing with Python, and learn how to install a broker, use Celery Python Module, and create a worker. You will also understand the StarCluster framework, Pycsp, Scoop, and Disco modules in Python. Further on, you will learn GPU programming with Python using the PyCUDA module along with evaluating performance limitations. Next you will get acquainted with the cloud computing concepts in Python, using Google App Engine (GAE), and building your first application with GAE. Lastly, you will learn about grid computing concepts in Python and using PyGlobus toolkit, GFTP and GASS COPY to transfer files, and service monitoring in PyGlobus. Style and approach A step-by-step guide to parallel programming using Python, with recipes accompanied by one or more programming examples. It is a practically oriented book and has all the necessary underlying parallel computing concepts.

Facing the Multicore-Challenge

Facing the Multicore-Challenge
Author : Rainer Keller,David Kramer,Jan-Philipp Weiss
Publisher : Springer
Release Date : 2010-10-05
Category : Computers
Total pages :156
GET BOOK

This survey of the impact of multicore and co-processor technologies on science as well as on large-scale interdisciplinary applications covers the state of the art in the field. It also points to a number of potentially fruitful areas for future research.

Parallel and Concurrent Programming in Haskell

Parallel and Concurrent Programming in Haskell
Author : Simon Marlow
Publisher : "O'Reilly Media, Inc."
Release Date : 2013-07-12
Category : Computers
Total pages :322
GET BOOK

If you have a working knowledge of Haskell, this hands-on book shows you how to use the language’s many APIs and frameworks for writing both parallel and concurrent programs. You’ll learn how parallelism exploits multicore processors to speed up computation-heavy programs, and how concurrency enables you to write programs with threads for multiple interactions. Author Simon Marlow walks you through the process with lots of code examples that you can run, experiment with, and extend. Divided into separate sections on Parallel and Concurrent Haskell, this book also includes exercises to help you become familiar with the concepts presented: Express parallelism in Haskell with the Eval monad and Evaluation Strategies Parallelize ordinary Haskell code with the Par monad Build parallel array-based computations, using the Repa library Use the Accelerate library to run computations directly on the GPU Work with basic interfaces for writing concurrent code Build trees of threads for larger and more complex programs Learn how to build high-speed concurrent network servers Write distributed programs that run on multiple machines in a network

Optimization, Application, and Usability of Algorithmic Skeletons for Parallel Programming on Multi-core and Multi-GPU Clusters

Optimization, Application, and Usability of Algorithmic Skeletons for Parallel Programming on Multi-core and Multi-GPU Clusters
Author : Fabian Wrede
Publisher : Unknown
Release Date : 2020
Category :
Total pages :129
GET BOOK

Parallel and High Performance Computing

Parallel and High Performance Computing
Author : Robert Robey,Juliana Zamora
Publisher : Manning Publications
Release Date : 2021-04-27
Category : Computers
Total pages :600
GET BOOK

Efficient parallel programming can save hours—or even days—of computing time. Parallel and High Performance Computing shows you how to deliver faster run-times, greater scalability, and increased energy efficiency to your programs by mastering parallel techniques for multicore processor and GPU hardware. Efficient parallel programming can save hours—or even days—of computing time. Parallel and High Performance Computing shows you how to deliver faster run-times, greater scalability, and increased energy efficiency to your programs by mastering parallel techniques for multicore processor and GPU hardware. Parallel and High Performance Computing is for anyone who needs to maximize application performance and reduce execution time. Get under the hood of parallel computing architecture and learn to evaluate hardware performance, scale up your resources to tackle larger problem sizes, and deliver a level of energy efficiency that makes high performance possible on hand-held devices. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.