March 3, 2021

Download Ebook Free Multilevel Inverters

Multilevel Inverters

Multilevel Inverters
Author : Ersan Kabalci
Publisher : Academic Press
Release Date : 2021-02-26
Category : Technology & Engineering
Total pages :274
GET BOOK

Multilevel Inverters: Topologies, Control Methods, and Applications investigates modern device topologies, control methods, and application areas for the rapidly developing conversion technology. The device topologies section begins with conventional two-level inverter topologies to provide a background on the DC-AC power conversion process and required circuit configurations. Thereafter, multilevel topologies originating from neutral point clamped topologies are presented in detail. The improved and inherited regular multilevel topologies such as flying capacitor and conventional H-bridge topology are presented to illustrate the multilevel concept. Emerging topologies are introduced regarding application areas such as renewable energy sources, electric vehicles, and power systems. The book goes on to discuss fundamental operational principles of inverters using the conventional pulse width modulated control method. Current and voltage based closed loop control methods such as repetitive control, space vector modulation, proportional resonant control and other recent methods are developed. Core modern applications including wind energy, photovoltaics, microgrids, hybrid microgrids, electric vehicles, active filters, and static VAR compensators are investigated in depth. Multilevel Inverters for Emergent Topologies and Advanced Power Electronics Applications is a valuable resource for electrical engineering specialists, smart grid specialists, researchers on electrical, power systems, and electronics engineering, energy and computer engineers. Reviews mathematical modeling and step-by-step simulation examples, straddling both basic and advanced topologies Assesses how to systematically deploy and control multilevel power inverters in application scenarios Reviews key applications across wind energy, photovoltaics, microgrids, hybrid microgrids, electric vehicles, active filters, static VAR compensators

Multilevel Inverters

Multilevel Inverters
Author : Krishna Kumar Gupta,Pallavee Bhatnagar
Publisher : Academic Press
Release Date : 2017-12-15
Category : Technology & Engineering
Total pages :228
GET BOOK

Multilevel Inverters: Conventional and Emerging Topologies and Their Control is written with two primary objectives: (a) explanation of fundamentals of multilevel inverters (MLIs) with reference to the general philosophy of power electronics; and (b) enabling the reader to systematically analyze a given topology with the possibility of contributing towards the ongoing evolution of topologies. The authors also present an updated status of current research in the field of MLIs with an emphasis on the evolution of newer topologies. In addition, the work includes a universal control scheme, with which any given topology can be modulated. Extensive qualitative and quantitative evaluations of emerging topologies give researchers and industry professionals suitable solutions for specific applications with a systematic presentation of software-based modeling and simulation, and an exploration of key issues. Topics covered also include power distribution among sources, voltage balancing, optimization switching frequency and asymmetric source configuration. This valuable reference further provides tools to model and simulate conventional and emerging topologies using MATLAB®/Simulink® and discusses execution of experimental set-up using popular interfacing tools. The book includes a Foreword by Dr. Frede Blaabjerg, Fellow IEEE, Professor and VILLUM Investigator, Aalborg University, Denmark. Includes a universal control scheme to help the reader learn the control of existing topologies and those which can be proposed in the future Presents three new topologies. Systematic development of these topologies and subsequent simulation and experimental studies exemplify an approach to the development of newer topologies and verification of their working and experimental verification. Contains a systematic and step-by-step approach to modelling and simulating various topologies designed to effectively employ low-power applications

Single-DC-Source Multilevel Inverters

Single-DC-Source Multilevel Inverters
Author : Hani Vahedi,Mohamed Trabelsi
Publisher : Springer
Release Date : 2019-03-23
Category : Technology & Engineering
Total pages :37
GET BOOK

The purpose of the book is to distinguish the single-de-source multilevel inverter topologies and to teach their control, switching and voltage balancing. It will include new information on voltage balancing and control of multilevel inverters. The book will answer some important questions about the revolution of power electronics converters: 1- Why multilevel inverter are better than 2-level ones? 2- Why single-de-source multilevel inverters are a matter of interest? 3- What are the redundant switching states and what do they do? 4- How to use redundant switching states in control and voltage balancing? 5- What are the applications of single-de-source multilevel inverters?

Multilevel Converters: Analysis, Modulation, Topologies, and Applications

Multilevel Converters: Analysis, Modulation, Topologies, and Applications
Author : Gabriele Grandi,Alex Ruderman
Publisher : MDPI
Release Date : 2019-10-14
Category : Technology & Engineering
Total pages :548
GET BOOK

This book is a collection of scientific papers concerning multilevel inverters examined from different points of view. Many applications are considered, such as renewable energy interface, power conditioning systems, electric drives, and chargers for electric vehicles. Different topologies have been examined in both new configurations and well-established structures, introducing novel and particular modulation strategies, and examining the effect of modulation techniques on voltage and current harmonics and the total harmonic distortion.

Peak-to-Peak Output Current Ripple Analysis in Multiphase and Multilevel Inverters

Peak-to-Peak Output Current Ripple Analysis in Multiphase and Multilevel Inverters
Author : Jelena Loncarski
Publisher : Springer
Release Date : 2014-06-23
Category : Technology & Engineering
Total pages :129
GET BOOK

The book introduces an original and effective method for the analysis of peak-to-peak output current ripple amplitude in three-phase two-level inverters. It shows that the method can be extended to both multiphase inverters, with particular emphasis on five-phase and seven-phase inverters, and multilevel ones, with particular emphasis on three-level inverters, and provides, therefore, a comparison among different number of output phases and voltage levels. The work reported on here represents the first detailed analysis of the peak-to-peak output current ripple. It makes an important step toward future developments in the field of high-power generation, and in grid-connected and motor-load systems.

Direct Current Control for Grid Connected Multilevel Inverters

Direct Current Control for Grid Connected Multilevel Inverters
Author : Markus Schaefer
Publisher : Unknown
Release Date : 2018
Category :
Total pages :221
GET BOOK

Control schemes for inverters of different topologies and various numbers of voltage levels are of great interest for many standard as well as special applications. This thesis describes a novel, robust and high-dynamic direct current control scheme for multilevel voltage source inverters. lt is highly independent from load parameters and universally applicable. The new control method is examined and validated with real measurements . The aim of the thesis is to establish and prove a new concept of a direct current control algorithm for multilevel inverter topologies for grid connected systems. This application is characterized by unknown grid conditions including failure modes and other distortions, complex inverter topologies and a large variety and complexity of current control algorithms for multilevel inverters. Therefore the complexity of the system needs to be reduced. Additionally , the advantages of multilevel inverters and the dynamic performance and robustness of direct current control techniques shall be combined. Starting from a detailed literature study on inverter topologies and direct as well as indirect current control methods, the thesis includes three chapters containing relevant contributions to the achievement of the objectives. A method reducing the control-complexity of multilevel converters has been developed. The simplification method is based on a transformation that converts any three-phase voltage (or current) into a non-orthogonal coordinate system. This choice minimizes the complexity and effort to determine the location of those discrete voltage space vectors directly surrounding the required reference voltage vector. A further improvement is achieved by scaling all coordinates to integer values. This is advantageous for further calculations on microprocessors or FPGA based control systems. The main contribution of this thesis is a new direct current control method minimizing the disadvantages of existing direct methods. At the same time advantages of other control algorithms shall be applied. The new method is based on a simple mathematical equation, that is, the solution of a scalar product, to always select the one inverter output voltage vector best reducing the actual current error. This results in the designation "Scalar Hysteresis Control - SHC". An advanced seeking algorithm ensures robust current control capability even in case of unknown, unsymmetrical or changing loads, in case of rapid set-point changes or in cases of unknown phase voltages . The new method therefore shows excellent properties in terms of simplicity , robustness, dynamics and independence from the inverter level count and the hardware topology . The properties of the control method are verified by means of simulations and real measurements on two-, three- and five-level inverters over the complete voltage operating range. Finally, all contributions are collected together and assessed with regard to the objectives. From the proposed control method new opportunities for future work, further developments and extensions are evolving for continuing scientific research.

Pulse Width Modulation

Pulse Width Modulation
Author : Satish Kumar Peddapelli
Publisher : Walter de Gruyter GmbH & Co KG
Release Date : 2017-01-01
Category : Science
Total pages :210
GET BOOK

This book offers a general approach to pulse width modulation techniques and multilevel inverter topologies. The multilevel inverters can be approximately compared to a sinusoidal waveform because of their increased number of direct current voltage levels, which provides an opportunity to eliminate harmonic contents and therefore allows the utilization of smaller and more reliable components. On the other side, multilevel inverters require more components than traditional inverters and that increases the overall cost of the system. The various algorithms for multilevel neutral point clamped inverter fed induction motor are proposed and implemented, and the results are analyzed. The performance of these algorithms is evaluated in terms of inverter output voltage, current waveforms and total harmonic distortion. Various basic pulse width modulation techniques, features and implementation of space vector pulse width modulation for a two-level inverter, and various multilevel inverter topologies are discussed in detail. This book is extremely useful for undergraduate students, postgraduate students, industry people, scientists of research laboratories and especially for the research scholars who are working in the area of multilevel inverters. Dr. Satish Kumar Peddapelli is Assistant Professor at the Osmania University in Hyderabad, India. His areas of interest are Power Electronics, Drives, Power Converters, Multi Level Inverters and Special Machines.

Multilevel Inverters and Their Applications in Power System

Multilevel Inverters and Their Applications in Power System
Author : Jin Wang
Publisher : Unknown
Release Date : 2005
Category : Electric current inverters
Total pages :350
GET BOOK

Modular Approach to Space Vector Modulation for Multilevel Inverters

Modular Approach to Space Vector Modulation for Multilevel Inverters
Author : Stephen Walter Fusi
Publisher : Unknown
Release Date : 2000
Category :
Total pages :150
GET BOOK

Modular Multilevel Converters

Modular Multilevel Converters
Author : Sixing Du,Apparao Dekka,Bin Wu,Navid Zargari
Publisher : John Wiley & Sons
Release Date : 2018-01-11
Category : Science
Total pages :368
GET BOOK

An invaluable academic reference for the area of high-power converters, covering all the latest developments in the field High-power multilevel converters are well known in industry and academia as one of the preferred choices for efficient power conversion. Over the past decade, several power converters have been developed and commercialized in the form of standard and customized products that power a wide range of industrial applications. Currently, the modular multilevel converter is a fast-growing technology and has received wide acceptance from both industry and academia. Providing adequate technical background for graduate- and undergraduate-level teaching, this book includes a comprehensive analysis of the conventional and advanced modular multilevel converters employed in motor drives, HVDC systems, and power quality improvement. Modular Multilevel Converters: Analysis, Control, and Applications provides an overview of high-power converters, reference frame theory, classical control methods, pulse width modulation schemes, advanced model predictive control methods, modeling of ac drives, advanced drive control schemes, modeling and control of HVDC systems, active and reactive power control, power quality problems, reactive power, harmonics and unbalance compensation, modeling and control of static synchronous compensators (STATCOM) and unified power quality compensators. Furthermore, this book: Explores technical challenges, modeling, and control of various modular multilevel converters in a wide range of applications such as transformer and transformerless motor drives, high voltage direct current transmission systems, and power quality improvement Reflects the latest developments in high-power converters in medium-voltage motor drive systems Offers design guidance with tables, charts graphs, and MATLAB simulations Modular Multilevel Converters: Analysis, Control, and Applications is a valuable reference book for academic researchers, practicing engineers, and other professionals in the field of high power converters. It also serves well as a textbook for graduate-level students.

Modeling and Optimization of Reconfigurable Multilevel Inverter to Improve Power Quality

Modeling and Optimization of Reconfigurable Multilevel Inverter to Improve Power Quality
Author : Weiqiang Chen
Publisher : Unknown
Release Date : 2019
Category : Electronic dissertations
Total pages :129
GET BOOK

This dissertation proposes new models, reconfiguration, and optimization of multilevel inverters in healthy and faulty conditions. The aim of this dissertation is to develop robust and practical multilevel inverter systems to improve the power quality of post-fault multilevel inverters. To improve the power quality, five essential parts are discussed in this dissertation. In the first part, an accurate mathematical model of neutral-point clamped (NPC) multilevel inverters is derived and utilized to analyze the impact of different types of component failures and existing reconfiguration methods on power quality. In the second part, a logic-based generalized fault diagnosis method is developed and implemented in multilevel inverters to detect major failures of multiple semiconductor devices. Existing reconfiguration methods are integrated with the proposed fault diagnosis method to recover the post-fault multilevel inverter from faulty conditions. In the third part, a logic-based fault prognosis method is proposed to predict the failure of semiconductor devices in multilevel inverters. In the fourth part, a practical reconfiguration method is proposed to overcome several shortages of existing reconfiguration methods. In the fifth part, factors that impact the power quality of multilevel inverters are analyzed and optimization methods are utilized to analyze the impact factors to reduce the degradation of power quality in reconfigured conditions.

Advanced DC/AC Inverters

Advanced DC/AC Inverters
Author : Fang Lin Luo,Hong Ye
Publisher : CRC Press
Release Date : 2017-07-28
Category : Technology & Engineering
Total pages :322
GET BOOK

DC/AC inversion technology is of vital importance for industrial applications, including electrical vehicles and renewable energy systems, which require a large number of inverters. In recent years, inversion technology has developed rapidly, with new topologies improving the power factor and increasing power efficiency. Proposing many novel approaches, Advanced DC/AC Inverters: Applications in Renewable Energy describes advanced DC/AC inverters that can be used for renewable energy systems. The book introduces more than 100 topologies of advanced inverters originally developed by the authors, including more than 50 new circuits. It also discusses recently published cutting-edge topologies. Novel PWM and Multilevel Inverters The book first covers traditional pulse-width-modulation (PWM) inverters before moving on to new quasi-impedance source inverters and soft-switching PWM inverters. It then examines multilevel DC/AC inverters, which have overcome the drawbacks of PWM inverters and provide greater scope for industrial applications. The authors propose four novel multilevel inverters: laddered multilevel inverters, super-lift modulated inverters, switched-capacitor inverters, and switched-inductor inverters. With simple structures and fewer components, these inverters are well suited for renewable energy systems. Get the Best Switching Angles for Any Multilevel Inverter A key topic for multilevel inverters is the need to manage the switching angles to obtain the lowest total harmonic distortion (THD). The authors outline four methods for finding the best switching angles and use simulation waveforms to verify the design. The optimum switching angles for multilevel DC/AC inverters are also listed in tables for quick reference. Application Examples of DC/AC Inverters in Renewable Energy Systems Highlighting the importance of inverters in improving energy saving and power-supply quality, the final chapter of the book supplies design examples for applications in wind turbine and solar panel energy systems. Written by pioneers in advanced conversion and inversion technology, this book guides readers in designing more effective DC/AC inverters for use in renewable energy systems.

An Assessment of Recent Multilevel Inverter Topologies with Reduced Power Electronics Components for Renewable Applications

An Assessment of Recent Multilevel Inverter Topologies with Reduced Power Electronics Components for Renewable Applications
Author : Anonim
Publisher : Unknown
Release Date : 2018
Category :
Total pages :129
GET BOOK

Abstract: The combination of multilevel inverter with renewable energy source power generation is paid more attention among the researchers, because multilevel inverters are widely accepted power converters in for high-power applications. The conventional multilevel inverters are highly implemented in industries, and the success of this has motivated to create newer topologies with the reduced overall power electronics components. In this paper, recent multilevel inverter topologies with reduced number of switches are taken into account and to find a suitable topology for photovoltaic (PV) and wind energy applications. Finally, this paper gives a pathway for the upcoming researchers to consider the design issues and challenges in the development of new multilevel inverter topologies.

High-Power Converters and AC Drives

High-Power Converters and AC Drives
Author : Bin Wu,Mehdi Narimani
Publisher : John Wiley & Sons
Release Date : 2017-01-17
Category : Science
Total pages :480
GET BOOK

A comprehensive reference of the latest developments in MV drive technology in the area of power converter topologies This new edition reflects the recent technological advancements in the MV drive industry, such as advanced multilevel converters and drive configurations. It includes three new chapters, Control of Synchronous Motor Drives, Transformerless MV Drives, and Matrix Converter Fed Drives. In addition, there are extensively revised chapters on Multilevel Voltage Source Inverters and Voltage Source Inverter-Fed Drives. This book includes a systematic analysis on a variety of high-power multilevel converters, illustrates important concepts with simulations and experiments, introduces various megawatt drives produced by world leading drive manufacturers, and addresses practical problems and their mitigations methods. This new edition: Provides an in-depth discussion and analysis of various control schemes for the MV synchronous motor drives Examines new technologies developed to eliminate the isolation transformer in the MV drives Discusses the operating principle and modulation schemes of matrix converter (MC) topology and multi-module cascaded matrix converters (CMCs) for MV drives, and their application in commercial MV drives Bin Wu is a Professor and Senior NSERC/Rockwell Automation Industrial Research Chair in Power Electronics and Electric Drives at Ryerson University, Canada. He is a fellow of Institute of Electrical and Electronics Engineers (IEEE), Engineering Institute of Canada (EIC), and Canadian Academy of Engineering (CAE). Dr. Wu has published more than 400 papers and holds more than 30 granted/pending US/European patents. He co-authored several books including Power Conversion and Control of Wind Energy Systems and Model Predictive Control of Wind Energy Conversion Systems (both by Wiley-IEEE Press). Mehdi Narimani is a Postdoctoral Research Associate with the Department of Electrical and computer Engineering at Ryerson University, Canada, and Rockwell Automation Canada. He is a senior member of IEEE. Dr. Narimani is author/co-author of more than 50 technical papers and four US/European patents (issued/pending review). His current research interests include power conversion, high power converters, control of power electronics, and renewable energy systems.

Power Electronics for Renewable Energy Systems, Transportation and Industrial Applications

Power Electronics for Renewable Energy Systems, Transportation and Industrial Applications
Author : Haitham Abu-Rub,Mariusz Malinowski,Kamal Al-Haddad
Publisher : John Wiley & Sons
Release Date : 2014-06-02
Category : Technology & Engineering
Total pages :832
GET BOOK

Compiles current research into the analysis and design ofpower electronic converters for industrial applications andrenewable energy systems, presenting modern and future applicationsof power electronics systems in the field of electricalvehicles With emphasis on the importance and long-term viability of PowerElectronics for Renewable Energy this book brings together thestate of the art knowledge and cutting-edge techniques in variousstages of research. The topics included are not currentlyavailable for practicing professionals and aim to enable the readerto directly apply the knowledge gained to their designs. The bookaddresses the practical issues of current and future electric andplug-in hybrid electric vehicles (PHEVs), and focuses primarily onpower electronics and motor drives based solutions for electricvehicle (EV) technologies. Propulsion system requirements and motorsizing for EVs is discussed, along with practical system sizingexamples. Key EV battery technologies are explained as well ascorresponding battery management issues. PHEV power systemarchitectures and advanced power electronics intensive charginginfrastructures for EVs and PHEVs are detailed. EV/PHEV interfacewith renewable energy is described, with practical examples. Thisbook explores new topics for further research needed world-wide,and defines existing challenges, concerns, and selected problemsthat comply with international trends, standards, and programs forelectric power conversion, distribution, and sustainable energydevelopment. It will lead to the advancement of the currentstate-of-the art applications of power electronics for renewableenergy, transportation, and industrial applications and will helpadd experience in the various industries and academia about theenergy conversion technology and distributed energysources. Combines state of the art global expertise to present thelatest research on power electronics and its application intransportation, renewable energy and different industrialapplications Offers an overview of existing technology and future trends,with discussion and analysis of different types of converters andcontrol techniques (power converters, high performance powerdevices, power system, high performance control system and novelapplications) Systematic explanation to provide researchers with enoughbackground and understanding to go deeper in the topics covered inthe book