# Download Ebook Free Multipoint Methods For Solving Nonlinear Equations

## Multipoint Methods for Solving Nonlinear Equations

Publisher : Academic Press

Release Date : 2012-12-31

Category : Mathematics

Total pages :344

GET BOOK

This book is the first on the topic and explains the most cutting-edge methods needed for precise calculations and explores the development of powerful algorithms to solve research problems. Multipoint methods have an extensive range of practical applications significant in research areas such as signal processing, analysis of convergence rate, fluid mechanics, solid state physics, and many others. The book takes an introductory approach in making qualitative comparisons of different multipoint methods from various viewpoints to help the reader understand applications of more complex methods. Evaluations are made to determine and predict efficiency and accuracy of presented models useful to wide a range of research areas along with many numerical examples for a deep understanding of the usefulness of each method. This book will make it possible for the researchers to tackle difficult problems and deepen their understanding of problem solving using numerical methods. Multipoint methods are of great practical importance, as they determine sequences of successive approximations for evaluative purposes. This is especially helpful in achieving the highest computational efficiency. The rapid development of digital computers and advanced computer arithmetic have provided a need for new methods useful to solving practical problems in a multitude of disciplines such as applied mathematics, computer science, engineering, physics, financial mathematics, and biology. Provides a succinct way of implementing a wide range of useful and important numerical algorithms for solving research problems Illustrates how numerical methods can be used to study problems which have applications in engineering and sciences, including signal processing, and control theory, and financial computation Facilitates a deeper insight into the development of methods, numerical analysis of convergence rate, and very detailed analysis of computational efficiency Provides a powerful means of learning by systematic experimentation with some of the many fascinating problems in science Includes highly efficient algorithms convenient for the implementation into the most common computer algebra systems such as Mathematica, MatLab, and Maple

## Multipoint Methods for Solving Nonlinear Equations

Publisher : Unknown

Release Date : 2013

Category : Differential equations, Nonlinear

Total pages :299

GET BOOK

This book is the first on the topic and explains the most cutting-edge methods needed for precise calculations and explores the development of powerful algorithms to solve research problems. Multipoint methods have an extensive range of practical applications significant in research areas such as signal processing, analysis of convergence rate, fluid mechanics, solid state physics, and many others. The book takes an introductory approach in making qualitative comparisons of different multipoint methods from various viewpoints to help the reader understand applications of more complex methods. Evaluations are made to determine and predict efficiency and accuracy of presented models useful to wide a range of research areas along with many numerical examples for a deep understanding of the usefulness of each method. This book will make it possible for the researchers to tackle difficult problems and deepen their understanding of problem solving using numerical methods. Multipoint methods are of great practical importance, as they determine sequences of successive approximations for evaluative purposes. This is especially helpful in achieving the highest computational efficiency. The rapid development of digital computers and advanced computer arithmetic have provided a need for new methods useful to solving practical problems in a multitude of disciplines such as applied mathematics, computer science, engineering, physics, financial mathematics, and biology. Provides a succinct way of implementing a wide range of useful and important numerical algorithms for solving research problems Illustrates how numerical methods can be used to study problems which have applications in engineering and sciences, including signal processing, and control theory, and financial computation Facilitates a deeper insight into the development of methods, numerical analysis of convergence rate, and very detailed analysis of computational efficiencyProvides a powerful means of learning by systematic experimentation with some of the many fascinating problems in scienceIncludes highly efficient algorithms convenient for the implementation into the most common computer algebra systems such as Mathematica, MatLab, and Maple.

## Iterative Methods for Solving Nonlinear Equations and Systems

Publisher : MDPI

Release Date : 2019-12-06

Category : Mathematics

Total pages :494

GET BOOK

Solving nonlinear equations in Banach spaces (real or complex nonlinear equations, nonlinear systems, and nonlinear matrix equations, among others), is a non-trivial task that involves many areas of science and technology. Usually the solution is not directly affordable and require an approach using iterative algorithms. This Special Issue focuses mainly on the design, analysis of convergence, and stability of new schemes for solving nonlinear problems and their application to practical problems. Included papers study the following topics: Methods for finding simple or multiple roots either with or without derivatives, iterative methods for approximating different generalized inverses, real or complex dynamics associated to the rational functions resulting from the application of an iterative method on a polynomial. Additionally, the analysis of the convergence has been carried out by means of different sufficient conditions assuring the local, semilocal, or global convergence. This Special issue has allowed us to present the latest research results in the area of iterative processes for solving nonlinear equations as well as systems and matrix equations. In addition to the theoretical papers, several manuscripts on signal processing, nonlinear integral equations, or partial differential equations, reveal the connection between iterative methods and other branches of science and engineering.

## Iterative Methods for Solving Nonlinear Equations and Systems

Publisher : MDPI

Release Date : 2019-12-06

Category : Mathematics

Total pages :494

GET BOOK

Solving nonlinear equations in Banach spaces (real or complex nonlinear equations, nonlinear systems, and nonlinear matrix equations, among others), is a non-trivial task that involves many areas of science and technology. Usually the solution is not directly affordable and require an approach using iterative algorithms. This Special Issue focuses mainly on the design, analysis of convergence, and stability of new schemes for solving nonlinear problems and their application to practical problems. Included papers study the following topics: Methods for finding simple or multiple roots either with or without derivatives, iterative methods for approximating different generalized inverses, real or complex dynamics associated to the rational functions resulting from the application of an iterative method on a polynomial. Additionally, the analysis of the convergence has been carried out by means of different sufficient conditions assuring the local, semilocal, or global convergence. This Special issue has allowed us to present the latest research results in the area of iterative processes for solving nonlinear equations as well as systems and matrix equations. In addition to the theoretical papers, several manuscripts on signal processing, nonlinear integral equations, or partial differential equations, reveal the connection between iterative methods and other branches of science and engineering.

## Advances in Iterative Methods for Nonlinear Equations

Publisher : Springer

Release Date : 2016-09-27

Category : Mathematics

Total pages :286

GET BOOK

This book focuses on the approximation of nonlinear equations using iterative methods. Nine contributions are presented on the construction and analysis of these methods, the coverage encompassing convergence, efficiency, robustness, dynamics, and applications. Many problems are stated in the form of nonlinear equations, using mathematical modeling. In particular, a wide range of problems in Applied Mathematics and in Engineering can be solved by finding the solutions to these equations. The book reveals the importance of studying convergence aspects in iterative methods and shows that selection of the most efficient and robust iterative method for a given problem is crucial to guaranteeing a good approximation. A number of sample criteria for selecting the optimal method are presented, including those regarding the order of convergence, the computational cost, and the stability, including the dynamics. This book will appeal to researchers whose field of interest is related to nonlinear problems and equations, and their approximation.

## Solution of Equations and Systems of Equations

Publisher : Elsevier

Release Date : 2016-06-03

Category : Mathematics

Total pages :352

GET BOOK

Solution of Equations and Systems of Equations, Second Edition deals with the Laguerre iteration, interpolating polynomials, method of steepest descent, and the theory of divided differences. The book reviews the formula for confluent divided differences, Newton's interpolation formula, general interpolation problems, and the triangular schemes for computing divided differences. The text explains the method of False Position (Regula Falsi) and cites examples of computation using the Regula Falsi. The book discusses iterations by monotonic iterating functions and analyzes the connection of the Regula Falsi with the theory of iteration. The text also explains the idea of the Newton-Raphson method and compares it with the Regula Falsi. The book also cites asymptotic behavior of errors in the Regula Falsi iteration, as well as the theorem on the error of the Taylor approximation to the root. The method of steepest descent or gradient method proposed by Cauchy ensures "global convergence" in very general conditions. This book is suitable for mathematicians, students, and professor of calculus, and advanced mathematics.

## Computational Science and its Applications

Publisher : CRC Press

Release Date : 2020-10-21

Category : Computers

Total pages :394

GET BOOK

Computational science is a rapidly growing multidisciplinary field concerned with the design, implementation, and use of mathematical models to analyze and solve real-world problems. It is an area of science that spans many disciplines and which involves the development of models and allows the use of computers to perform simulations or numerical analysis to understand problems that are computational and theoretical. Computational Science and its Applications provides an opportunity for readers to develop abilities to pose and solve problems that combine insights from one or more disciplines from the natural sciences with mathematical tools and computational skills. This requires a unique combination of applied and theoretical knowledge and skills. The topics covered in this edited book are applications of wavelet and fractals, modeling by partial differential equations on flat structure as well as on graphs and networks, computational linguistics, prediction of natural calamities and diseases like epilepsy seizure, heart attack, stroke, biometrics, modeling through inverse problems, interdisciplinary topics of physics, mathematics, and medical science, and modeling of terrorist attacks and human behavior. The focus of this book is not to educate computer specialists, but to provide readers with a solid understanding of basic science as well as an integrated knowledge on how to use essential methods from computational science. Features: Modeling of complex systems Cognitive computing systems for real-world problems Presentation of inverse problems in medical science and their numerical solutions Challenging research problems in many areas of computational science This book could be used as a reference book for researchers working in theoretical research as well as those who are doing modeling and simulation in such disciplines as physics, biology, geoscience, and mathematics, and those who have a background in computational science.

## Nonlinear Systems

Publisher : BoD – Books on Demand

Release Date : 2016-10-19

Category : Mathematics

Total pages :364

GET BOOK

The book consists mainly of two parts: Chapter 1 - Chapter 7 and Chapter 8 - Chapter 14. Chapter 1 and Chapter 2 treat design techniques based on linearization of nonlinear systems. An analysis of nonlinear system over quantum mechanics is discussed in Chapter 3. Chapter 4 to Chapter 7 are estimation methods using Kalman filtering while solving nonlinear control systems using iterative approach. Optimal approaches are discussed in Chapter 8 with retarded control of nonlinear system in singular situation, and Chapter 9 extends optimal theory to H-infinity control for a nonlinear control system.Chapters 10 and 11 present the control of nonlinear dynamic systems, twin-rotor helicopter and 3D crane system, which are both underactuated, cascaded dynamic systems. Chapter 12 applies controls to antisynchronization/synchronization in the chaotic models based on Lyapunov exponent theorem, and Chapter 13 discusses developed stability analytic approaches in terms of Lyapunov stability. The analysis of economic activities, especially the relationship between stock return and economic growth, is presented in Chapter 14.

## Symmetry with Operator Theory and Equations

Publisher : MDPI

Release Date : 2019-10-21

Category : Mathematics

Total pages :208

GET BOOK

A plethora of problems from diverse disciplines such as Mathematics, Mathematical: Biology, Chemistry, Economics, Physics, Scientific Computing and also Engineering can be formulated as an equation defined in abstract spaces using Mathematical Modelling. The solutions of these equations can be found in closed form only in special case. That is why researchers and practitioners utilize iterative procedures from which a sequence is being generated approximating the solution under some conditions on the initial data. This type of research is considered most interesting and challenging. This is our motivation for the introduction of this special issue on Iterative Procedures.

## Iterative Methods for the Solution of Equations

Publisher : American Mathematical Soc.

Release Date : 1982

Category : Mathematics

Total pages :310

GET BOOK

From the Preface (1964): ``This book presents a general theory of iteration algorithms for the numerical solution of equations and systems of equations. The relationship between the quantity and the quality of information used by an algorithm and the efficiency of the algorithm is investigated. Iteration functions are divided into four classes depending on whether they use new information at one or at several points and whether or not they reuse old information. Known iteration functions are systematized and new classes of computationally effective iteration functions are introduced. Our interest in the efficient use of information is influenced by the widespread use of computing machines ... The mathematical foundations of our subject are treated with rigor, but rigor in itself is not the main object. Some of the material is of wider application ... Most of the material is new and unpublished. Every attempt has been made to keep the subject in proper historical perspective ... ''

## Design, Analysis, and Applications of Iterative Methods for Solving Nonlinear Systems

Publisher : Unknown

Release Date : 2016

Category : Mathematics

Total pages :129

GET BOOK

In this chapter, we present an overview of some multipoint iterative methods for solving nonlinear systems obtained by using different techniques such as composition of known methods, weight function procedure, and pseudo-composition, et cetera The dynamical study of these iterative schemes provides us valuable information about their stability and reliability. A numerical test on a specific problem coming from chemistry is performed to compare the described methods with classical ones and to confirm the theoretical results.

## Numerical Methods for Engineers and Scientists, Second Edition,

Publisher : CRC Press

Release Date : 2001-05-31

Category : Mathematics

Total pages :840

GET BOOK

Emphasizing the finite difference approach for solving differential equations, the second edition of Numerical Methods for Engineers and Scientists presents a methodology for systematically constructing individual computer programs. Providing easy access to accurate solutions to complex scientific and engineering problems, each chapter begins with objectives, a discussion of a representative application, and an outline of special features, summing up with a list of tasks students should be able to complete after reading the chapter- perfect for use as a study guide or for review. The AIAA Journal calls the book "...a good, solid instructional text on the basic tools of numerical analysis."

## Solving Nonlinear Equations with Newton's Method

Publisher : SIAM

Release Date : 2003-01-01

Category : Iterative methods (Mathematics)

Total pages :104

GET BOOK

This book on Newton's method is a user-oriented guide to algorithms and implementation. In just over 100 pages, it shows, via algorithms in pseudocode, in MATLAB, and with several examples, how one can choose an appropriate Newton-type method for a given problem, diagnose problems, and write an efficient solver or apply one written by others. It contains trouble-shooting guides to the major algorithms, their most common failure modes, and the likely causes of failure. It also includes many worked-out examples (available on the SIAM website) in pseudocode and a collection of MATLAB codes, allowing readers to experiment with the algorithms easily and implement them in other languages.

## Iterative Solution of Nonlinear Equations in Several Variables

Publisher : Elsevier

Release Date : 2014-05-10

Category : Mathematics

Total pages :592

GET BOOK

Computer Science and Applied Mathematics: Iterative Solution of Nonlinear Equations in Several Variables presents a survey of the basic theoretical results about nonlinear equations in n dimensions and analysis of the major iterative methods for their numerical solution. This book discusses the gradient mappings and minimization, contractions and the continuation property, and degree of a mapping. The general iterative and minimization methods, rates of convergence, and one-step stationary and multistep methods are also elaborated. This text likewise covers the contractions and nonlinear majorants, convergence under partial ordering, and convergence of minimization methods. This publication is a good reference for specialists and readers with an extensive functional analysis background.

## Computational Theory of Iterative Methods

Publisher : Elsevier

Release Date : 2007-09-04

Category : Mathematics

Total pages :504

GET BOOK

The book is designed for researchers, students and practitioners interested in using fast and efficient iterative methods to approximate solutions of nonlinear equations. The following four major problems are addressed. Problem 1: Show that the iterates are well defined. Problem 2: concerns the convergence of the sequences generated by a process and the question of whether the limit points are, in fact solutions of the equation. Problem 3: concerns the economy of the entire operations. Problem 4: concerns with how to best choose a method, algorithm or software program to solve a specific type of problem and its description of when a given algorithm succeeds or fails. The book contains applications in several areas of applied sciences including mathematical programming and mathematical economics. There is also a huge number of exercises complementing the theory. - Latest convergence results for the iterative methods - Iterative methods with the least computational cost - Iterative methods with the weakest convergence conditions - Open problems on iterative methods