January 26, 2021

Download Ebook Free Nanofluids

Nanofluids

Nanofluids
Author : Mohammad Hatami,Dengwei Jing
Publisher : Academic Press
Release Date : 2020-01-15
Category : Science
Total pages :368
GET BOOK

Nanofluids: Mathematical, Numerical and Experimental Analysis provides a combined treatment of the numerical and experimental aspects of this crucial topic. Mathematical methods such as the weighted residual method and perturbation techniques, as well as numerical methods such as Finite Element and Lattice-Boltzmann are addressed, along with experimental methods in nanofluid analysis. The effects of magnetic field, electric field and solar radiation on the optical properties and synthesis of nanofluid flow are examined and discussed as well. This book also functions as a comprehensive review of recent progress in nanofluids analysis and its application in different engineering sciences. This book is ideal for all readers in industry or academia, along with anyone interested in nanofluids for theoretical or experimental design reasons. Explains the governing equations in which magnetic or electric fields are applied Gives instructions on how to confirm numerical modeling results by comparing with experimental outcomes Provides detailed information on the governing equations where nanofluids are used as a working fluid

Nanofluids

Nanofluids
Author : Sarit K. Das,Stephen U. Choi,Wenhua Yu,T. Pradeep
Publisher : John Wiley & Sons
Release Date : 2007-12-04
Category : Technology & Engineering
Total pages :485
GET BOOK

Introduction to nanofluids--their properties, synthesis, characterization, and applications Nanofluids are attracting a great deal of interest with their enormous potential to provide enhanced performance properties, particularly with respect to heat transfer. In response, this text takes you on a complete journey into the science and technology of nanofluids. The authors cover both the chemical and physical methods for synthesizing nanofluids, explaining the techniques for creating a stable suspension of nanoparticles. You get an overview of the existing models and experimental techniques used in studying nanofluids, alongside discussions of the challenges and problems associated with some of these models. Next, the authors set forth and explain the heat transfer applications of nanofluids, including microelectronics, fuel cells, and hybrid-powered engines. You also get an introduction to possible future applications in large-scale cooling and biomedicine. This book is the work of leading pioneers in the field, one of whom holds the first U.S. patent for nanofluids. They have combined their own first-hand knowledge with a thorough review of theliterature. Among the key topics are: * Synthesis of nanofluids, including dispersion techniques and characterization methods * Thermal conductivity and thermo-physical properties * Theoretical models and experimental techniques * Heat transfer applications in microelectronics, fuel cells, and vehicle engines This text is written for researchers in any branch of science and technology, without any prerequisite.It therefore includes some basic information describing conduction, convection, and boiling of nanofluids for those readers who may not have adequate background in these areas. Regardless of your background, you'll learn to develop nanofluids not only as coolants, but also for a host ofnew applications on the horizon.

Nanofluids and Their Engineering Applications

Nanofluids and Their Engineering Applications
Author : K.R.V. Subramanian,Tubati Nageswara Rao,Avinash Balakrishnan
Publisher : CRC Press
Release Date : 2019-06-18
Category : Science
Total pages :498
GET BOOK

Nanofluids are solid-liquid composite material consisting of solid nanoparticles suspended in liquid with enhanced thermal properties. This book introduces basic fluid mechanics, conduction and convection in fluids, along with nanomaterials for nanofluids, property characterization, and outline applications of nanofluids in solar technology, machining and other special applications. Recent experiments on nanofluids have indicated significant increase in thermal conductivity compared with liquids without nanoparticles or larger particles, strong temperature dependence of thermal conductivity, and significant increase in critical heat flux in boiling heat transfer, all of which are covered in the book. Key Features Exclusive title focusing on niche engineering applications of nanofluids Contains high technical content especially in the areas of magnetic nanofluids and dilute oxide based nanofluids Feature examples from research applications such as solar technology and heat pipes Addresses heat transfer and thermodynamic features such as efficiency and work with mathematical rigor Focused in content with precise technical definitions and treatment

Recent Developments of Nanofluids

Recent Developments of Nanofluids
Author : Rahmat Ellahi
Publisher : MDPI
Release Date : 2018-06
Category : Science
Total pages :158
GET BOOK

Over the past two decades, there has been increased attention in the research of nanofluid due to its widely expanded domain in many industrial and technological applications. Major advances in the modeling of key topics such as nanofluid, MHD, heat transfer, convection, porous media, Newtonian/non-Newtonian fluids have been made and finally published in the special issue on recent developments in nanofluids for Applied Sciences. The present attempt is to edit the special issue in a book form. Although, this book is not a formal textbook even than it will definitely be useful for research students and university teachers in overcoming the difficulties occurring in the said topic while dealing with the nonlinear governing equations. On one side the real world problems in mathematics, physics, biomechanics, engineering and other disciplines of sciences are mostly described by the set of nonlinear equations whereas on the other hand, it is often more difficult to get an analytic solution or even a numerical one. This book has successfully handled this challenging job with latest techniques. In addition the findings of the simulation are logically realistic and meet the standard of sufficient scientific value.

Hybrid Nanofluids for Convection Heat Transfer

Hybrid Nanofluids for Convection Heat Transfer
Author : Hafiz Muhammad Ali
Publisher : Academic Press
Release Date : 2020-05-15
Category : Science
Total pages :300
GET BOOK

Hybrid Nanofluids for Convection Heat Transfer discusses how to maximize heat transfer rates with the addition of nanoparticles into conventional heat transfer fluids. The book addresses definitions, preparation techniques, thermophysical properties and heat transfer characteristics with mathematical models, performance-affecting factors, and core applications with implementation challenges of hybrid nanofluids. The work adopts mathematical models and schematic diagrams in review of available experimental methods. It enables readers to create new techniques, resolve existing research problems, and ultimately to implement hybrid nanofluids in convection heat transfer applications. Provides key heat transfer performance and thermophysical characteristics of hybrid nanofluids Reviews parameter selection and property measurement techniques for thermal performance calibration Explores the use of predictive mathematical techniques for experimental properties

Heat Transfer Enhancement with Nanofluids

Heat Transfer Enhancement with Nanofluids
Author : Vincenzo Bianco,Oronzio Manca,Sergio Nardini,Kambiz Vafai
Publisher : CRC Press
Release Date : 2015-04-01
Category : Science
Total pages :481
GET BOOK

Nanofluids are gaining the attention of scientists and researchers around the world. This new category of heat transfer medium improves the thermal conductivity of fluid by suspending small solid particles within it and offers the possibility of increased heat transfer in a variety of applications. Bringing together expert contributions from across the globe, Heat Transfer Enhancement with Nanofluids presents a complete understanding of the application of nanofluids in a range of fields and explains the main techniques used in the analysis of nanofuids flow and heat transfer. Providing a rigorous framework to help readers develop devices employing nanofluids, the book addresses basic topics that include the analysis and measurements of thermophysical properties, convection, and heat exchanger performance. It explores the issues of convective instabilities, nanofluids in porous media, and entropy generation in nanofluids. The book also contains the latest advancements, innovations, methodologies, and research on the subject. Presented in 16 chapters, the text: Discusses the possible mechanisms of thermal conduction enhancement Reviews the results of a theoretical analysis determining the anomalous enhancement of heat transfer in nanofluid flow Assesses different approaches modeling the thermal conductivity enhancement of nanofluids Focuses on experimental methodologies used to determine the thermophysical properties of nanofluids Analyzes forced convection heat transfer in nanofluids in both laminar and turbulent convection Highlights the application of nanofluids in heat exchangers and microchannels Discusses the utilization of nanofluids in porous media Introduces the boiling of nanofluids Treats pool and flow boiling by analyzing the effect of nanoparticles on these complex phenomena Indicates future research directions to further develop this area of knowledge, and more Intended as a reference for researchers and engineers working in the field, Heat Transfer Enhancement with Nanofluids presents advanced topics that detail the strengths, weaknesses, and potential future developments in nanofluids heat transfer.

Application of Nonlinear Systems in Nanomechanics and Nanofluids

Application of Nonlinear Systems in Nanomechanics and Nanofluids
Author : Davood Domairry Ganji,Sayyid Habibollah Hashemi Kachapi
Publisher : William Andrew
Release Date : 2015-03-19
Category : Technology & Engineering
Total pages :412
GET BOOK

With Application of Nonlinear Systems in Nanomechanics and Nanofluids the reader gains a deep and practice-oriented understanding of nonlinear systems within areas of nanotechnology application as well as the necessary knowledge enabling the handling of such systems. The book helps readers understand relevant methods and techniques for solving nonlinear problems, and is an invaluable reference for researchers, professionals and PhD students interested in research areas and industries where nanofluidics and dynamic nano-mechanical systems are studied or applied. The book is useful in areas such as nanoelectronics and bionanotechnology, and the underlying framework can also be applied to other problems in various fields of engineering and applied sciences. Provides comprehensive coverage of nano-dynamical systems and their specialized processes and applications in the context of nonlinear differential equations and analytical methods Enables researchers and engineers to better model, interpret and control nanofluidics and other nano-dynamical systems and their application processes Explains nano-dynamical systems by means of describing ‘real-life’ application case studies

Advances in Transport Phenomena

Advances in Transport Phenomena
Author : Liqiu Wang
Publisher : Springer Science & Business Media
Release Date : 2009-10-15
Category : Science
Total pages :246
GET BOOK

The term transport phenomena is used to describe processes in which mass, momentum, energy and entropy move about in matter. Advances in Transport Phenomena provide state-of-the-art expositions of major advances by theoretical, numerical and experimental studies from a molecular, microscopic, mesoscopic, macroscopic or megascopic point of view across the spectrum of transport p- nomena, from scientific enquiries to practical applications. The annual review series intends to fill the information gap between regularly published journals and university-level textbooks by providing in-depth review articles over a broader scope than in journals. The authoritative articles, contributed by international- leading scientists and practitioners, establish the state of the art, disseminate the latest research discoveries, serve as a central source of reference for fundamentals and applications of transport phenomena, and provide potential textbooks to senior undergraduate and graduate students. The series covers mass transfer, fluid mechanics, heat transfer and thermo- namics. The 2009 volume contains the four articles on biomedical, environmental and nanoscale transports. The editorial board expresses its appreciation to the c- tributing authors and reviewers who have maintained the standard associated with Advances in Transport Phenomena. We also would like to acknowledge the efforts of the staff at Springer who have made the professional and attractive pr- entation of the volume. Serial Editorial Board Editor-in-Chief Professor L. Q. Wang The University of Hong Kong, Hong Kong; [email protected] hk Editors Professor A. R. Balakrishnan Indian Institute of Technology Madras, India Professor A.

Nanofluids

Nanofluids
Author : S. M. Sohel Murshed,C. A. Nieto de Castro
Publisher : Nova Science Pub Incorporated
Release Date : 2014-01-01
Category : Technology & Engineering
Total pages :282
GET BOOK

As an emerging research field, nanofluids have sparked immense interest from researchers around the world and have been a subject of intensive research in recent years. Because of their fascinating thermophysical properties and heat transfer performances, as well as enormous potential applications, nanofluids are considered the next generation heat transfer fluids. This book covers a wide range of topics from preparation methodology, properties, and theories to applications of nanofluids. In addition to the state-of-the-art reviews and analysis on the key areas of nanofluids including thermophysical and heat transfer properties of carbon nanotube and magnetic nanofluids, viscosity of metal oxide nanofluids and pool boiling of nanofluids, this book presents extensive experimental and theoretical research efforts on thermal conductivity, viscosity, convective heat transfer, capillary wetting, and transport properties of nanofluids. Studies on the application of nanofluids in droplet-based microfluidic technology are presented. Another new area of nanofluid-based optical engineering is explored in this book. It also introduces a new class of nanofluids named-ionanofluids. Featuring contributions from some of the leading researchers in the field, this book is a unique reference source and an invaluable guide to scientists, researchers, engineers, industrial people, graduate and postgraduate students, as well as academicians across the science and engineering disciplines.

Nanofluids

Nanofluids
Author : Yuwen Zhang
Publisher : Nova Science Pub Incorporated
Release Date : 2013-01-01
Category : Technology & Engineering
Total pages :377
GET BOOK

This book presents current research related to the synthesis, characterisation, and heat transfer of nanofluids. Nanofluids are stable colloidal suspensions of solid nanomaterials in base fluids. While nanoparticles were first added to base fluids to obtain nanofluids; other nanomaterials, like nanorods, nanotubes, nanowires, nanofibers, nanosheets, or other nanocomposites, are used to synthesise the nanofluids. The types of base fluids cover a wide range of liquids that include water, oil, ethylene-glycol (automotive antifreeze), refrigerants, polymer solutions, or even bio-fluids. The special properties of nanomaterials and their interactions with base fluids lead to substantially different properties of nanofluids compared with that of base fluids. Significant physical insights into complex physical phenomena in nanofluids are gained via the utilisation of advanced theoretical tools and state-of-the-art experimental measurement techniques.

Heat Transfer Due to Laminar Natural Convection of Nanofluids

Heat Transfer Due to Laminar Natural Convection of Nanofluids
Author : De-Yi Shang,Liang-Cai Zhong
Publisher : Springer
Release Date : 2018-07-30
Category : Science
Total pages :202
GET BOOK

This book presents a theoretical study of heat transfer due to laminar natural convection of nanofluids, using Al2O3-water nanofluid as an example. An innovative method of similarity transformation of velocity fields on laminar boundary layers is applied for the development of a mathematical governing model of natural convection with actual nanofluids, and a novel model of the nanofluid's variable thermophysical properties is derived by a mathematical analysis based on the developed model of variable physical properties of fluids combined with the model of the nanofluid's thermal conductivity and viscosity. Based on these, the physical property factors of nanofluids are produced, which leads to a simultaneous solution for deep investigations of hydrodynamics and heat transfer of nanofluid's natural convection. The book also proposes novel predictive formulae for the evaluation of heat transfer of Al2O3-water nanofluid’s natural convection. The formulae have reliable theoretical and practical value because they are developed by rigorous theoretical analysis of heat transfer combined with full consideration of the effects of the temperature-dependent physical properties of nanofluids and the nanoparticle shape factor and concentration, as well as variations of fluid boundary temperatures. The conversion factors proposed help to turn the heat transfer coefficient and rate of fluid natural convection into those of nanofluid natural convection. Furthermore, several calculation examples are provided to demonstrate the heat transfer application of the proposed predictive formulae.

Nanofluid Heat and Mass Transfer in Engineering Problems

Nanofluid Heat and Mass Transfer in Engineering Problems
Author : Mohsen Sheikholeslami Kandelousi
Publisher : BoD – Books on Demand
Release Date : 2017-03-15
Category : Science
Total pages :284
GET BOOK

In the present book, nanofluid heat and mass transfer in engineering problems are investigated. The use of additives in the base fluid like water or ethylene glycol is one of the techniques applied to augment heat transfer. Newly, innovative nanometer-sized particles have been dispersed in the base fluid in heat transfer fluids. The fluids containing the solid nanometer-sized particle dispersion are called "nanofluids." At first, nanofluid heat and mass transfer over a stretching sheet are provided with various boundary conditions. Problems faced for simulating nanofluids are reported. Also, thermophysical properties of various nanofluids are presented. Nanofluid flow and heat transfer in the presence of magnetic field are investigated. Furthermore, applications for electrical and biomedical engineering are provided. Besides, applications of nanofluid in internal combustion engine are provided.

Microfluidics Based Microsystems

Microfluidics Based Microsystems
Author : S. Kakaç,B. Kosoy,D. Li,A. Pramuanjaroenkij
Publisher : Springer Science & Business Media
Release Date : 2010-09-10
Category : Science
Total pages :618
GET BOOK

This volume contains an archival record of the NATO Advanced Study Institute on Microfluidics Based Microsystems – Fundamentals and App- cations held in Çe ?me-Izmir, Turkey, August 23–September 4, 2009. ASIs are intended to be high-level teaching activity in scientific and technical areas of current concern. In this volume, the reader may find interesting chapters and various microsystems fundamentals and applications. As the world becomes increasingly concerned with terrorism, early - spot detection of terrorist’s weapons, particularly bio-weapons agents such as bacteria and viruses are extremely important. NATO Public Diplomacy division, Science for Peace and Security section support research, Advanced Study Institutes and workshops related to security. Keeping this policy of NATO in mind, we made such a proposal on Microsystems for security. We are very happy that leading experts agreed to come and lecture in this important NATO ASI. We will see many examples that will show us Microfluidics usefulness for rapid diagnostics following a bioterrorism attack. For the applications in national security and anti-terrorism, microfluidic system technology must meet the challenges. To develop microsystems for security and to provide a comprehensive state-of-the-art assessment of the existing research and applications by treating the subject in considerable depth through lectures from eminent professionals in the field, through discussions and panel sessions are very beneficial for young scientists in the field.

Preparation, Characterization, Properties, and Application of Nanofluid

Preparation, Characterization, Properties, and Application of Nanofluid
Author : I. M. Mahbubul
Publisher : William Andrew
Release Date : 2018-09-20
Category : Science
Total pages :374
GET BOOK

Preparation, Characterization, Properties and Application of Nanofluid begins with an introduction of colloidal systems and their relation to nanofluid. Special emphasis on the preparation of stable nanofluid and the impact of ultrasonication power on nanofluid preparation is also included, as are characterization and stability measurement techniques. Other topics of note in the book include the thermophysical properties of nanofluids as thermal conductivity, viscosity, and density and specific heat, including the figure of merit of properties. In addition, different parameters, like particle type, size, concentration, liquid type and temperature are discussed based on experimental results, along with a variety of other important topics. The available model and correlations used for nanofluid property calculation are also included. Provides readers with tactics on nanofluid preparation methods, including how to improve their stability Explores the effect of preparation method and stability on thermophysical and rheological properties of nanofluids Assesses the available model and correlations used for nanofluid property calculation

Handbook of Nanophysics

Handbook of Nanophysics
Author : Klaus D. Sattler
Publisher : CRC Press
Release Date : 2016-04-19
Category : Science
Total pages :716
GET BOOK

In the 1990s, nanoparticles and quantum dots began to be used in optical, electronic, and biological applications. Now they are being studied for use in solid-state quantum computation, tumor imaging, and photovoltaics. Handbook of Nanophysics: Nanoparticles and Quantum Dots focuses on the fundamental physics of these nanoscale materials and structures. Each peer-reviewed chapter contains a broad-based introduction and enhances understanding of the state-of-the-art scientific content through fundamental equations and illustrations, some in color. This volume provides an overview of the major categories of nanoparticles, including amorphous, magnetic, ferroelectric, and zinc oxide nanoparticles; helium nanodroplets; and silicon, tetrapod-shaped semiconductor, magnetic ion-doped semiconductor, and natural polysaccharide nanocrystals. It also describes their properties and interactions. In the group of chapters on nanofluids, the expert contributors discuss the stability of nanodispersions, liquid slip at the molecular scale, thermophysical properties, and heat transfer. They go on to examine the theory, self-assembly, and teleportation of quantum dots. Nanophysics brings together multiple disciplines to determine the structural, electronic, optical, and thermal behavior of nanomaterials; electrical and thermal conductivity; the forces between nanoscale objects; and the transition between classical and quantum behavior. Facilitating communication across many disciplines, this landmark publication encourages scientists with disparate interests to collaborate on interdisciplinary projects and incorporate the theory and methodology of other areas into their work.