December 4, 2020

Download Ebook Free Nanomaterials For Sustainable Energy And Environmental Remediation

Nanomaterials for Sustainable Energy and Environmental Remediation

Nanomaterials for Sustainable Energy and Environmental Remediation
Author : Mu. Naushad,R. Saravanan,Raju Kumar
Publisher : Elsevier
Release Date : 2020-03-14
Category : Technology & Engineering
Total pages :402
GET BOOK

Nanostructured materials, especially, 1D, 2D and 3D nanostructures, and their engineered architectures are being increasingly used due to their potential to achieve sustainable development in energy and environmental sectors, providing a solution to a range of global challenges. A huge amount of research has been devoted in the recent past on the fine-tuning of nano-architecutres to accomplish innovations in energy storage and conversions, i.e., batteries, supercapacitors, fuel cells, solar cells, and electrochromic devices, bifunctional catalysts for ORR and OER, gas to fuels, liquid to fuels, and photocatalysts, corrosion, electrochemical sensors, and pollution and contaminants removal. Nanomaterials for Sustainable Energy and Environmental Remediation describes the fundamental aspects of a diverse range of nanomaterials for the sustainable development in energy and environmental remediation in a comprehensive manner. Experimental studies of varies nanomaterials will be discussed along with their design and applications, with specific attention to various chemical reactions involving and their challenges for catalysis, energy storage and conversion systems, and removal of pollutants are addressed. This book will also emphasise the challenges with past developments and direction for further research, details pertaining to the current ground - breaking technology and future perspective with multidisciplinary approach on energy, nanobiotechnology and environmental science Summarizes the latest advances in how nanotechnology is being used in energy and environmental science Outlines the major challenges to using nanomaterials for creating new products and devices in the sustainable energy and environmental sectors Helps materials scientists and engineers make selection and design decisions regarding which nanomaterial to use when creating new produts and evices for energy and environmental applications

Green Photo-active Nanomaterials

Green Photo-active Nanomaterials
Author : Nurxat Nuraje,Ramazan Asmatulu,Guido Mul
Publisher : Unknown
Release Date : 2020
Category :
Total pages :129
GET BOOK

Emerging Nanostructured Materials for Energy and Environmental Science

Emerging Nanostructured Materials for Energy and Environmental Science
Author : Saravanan Rajendran,Mu. Naushad,Kumar Raju,Rabah Boukherroub
Publisher : Springer
Release Date : 2019-02-07
Category : Science
Total pages :565
GET BOOK

This book provides the fundamental aspects of the diverse ranges of nanostructured materials (0D, 1D, 2D and 3D) for energy and environmental applications in a comprehensive manner written by specialists who are at the forefront of research in the field of energy and environmental science. Experimental studies of nanomaterials for aforementioned applications are discussed along with their design, fabrication and their applications, with a specific focus on catalysis, energy storage and conversion systems. This work also emphasizes the challenges of past developments and directions for further research. It also looks at details pertaining to the current ground – breaking of nanotechnology and future perspectives with a multidisciplinary approach to energy and environmental science and informs readers about an efficient utilization of nanomaterials to deliver solutions for the public.

Nanotechnology for Energy Sustainability

Nanotechnology for Energy Sustainability
Author : Baldev Raj,Marcel Van de Voorde,Yashwant Mahajan
Publisher : John Wiley & Sons
Release Date : 2017-01-27
Category : Technology & Engineering
Total pages :1316
GET BOOK

In three handy volumes, this ready reference provides a detailed overview of nanotechnology as it is applied to energy sustainability. Clearly structured, following an introduction, the first part of the book is dedicated to energy production, renewable energy, energy storage, energy distribution, and energy conversion and harvesting. The second part then goes on to discuss nano-enabled materials, energy conservation and management, technological and intellectual property-related issues and markets and environmental remediation. The text concludes with a look at and recommendations for future technology advances. An essential handbook for all experts in the field - from academic researchers and engineers to developers in industry.

Nanotechnology for Energy and Environmental Engineering

Nanotechnology for Energy and Environmental Engineering
Author : Lalita Ledwani,Jitendra S. Sangwai
Publisher : Springer Nature
Release Date : 2020-03-12
Category : Technology & Engineering
Total pages :596
GET BOOK

This book examines the potential applications of nanoscience and nanotechnology to promote eco-friendly processes and techniques for energy and environment sustainability. Covering various aspects of both the synthesis and applications of nanoparticles and nanofluids for energy and environmental engineering, its goal is to promote eco-friendly processes and techniques. Accordingly, the book elaborates on the development of reliable, economical, eco-friendly processes through advanced nanoscience and technological research and innovations. Gathering contributions by researchers actively engaged in various domains of nanoscience and technology, it addresses topics such as nanoparticle synthesis (both top-down and bottom-up approaches); applications of nanomaterials, nanosensors and plasma discharge in pollution control; environmental monitoring; agriculture; energy recovery; production enhancement; energy conservation and storage; surface modification of materials for energy storage; fuel cells; pollution mitigation; and CO2 capture and sequestration. Given its scope, the book will be of interest to academics and researchers whose work involves nanotechnology or nanomaterials, especially as applied to energy and/or environmental sustainability engineering. Graduate students in the same areas will also find it a valuable resource.

Nanomaterials for Green Energy

Nanomaterials for Green Energy
Author : Bharat A Bhanvase,Vijay B Pawade,Sanjay J. Dhoble,Shirish H. Sonawane,Muthupandian Ashokkumar
Publisher : Elsevier
Release Date : 2018-04-18
Category : Science
Total pages :500
GET BOOK

Nanomaterials for Green Energy focuses on the synthesis, characterization and application of novel nanomaterials in the fields of green science and technology. This book contains fundamental information about the properties of novel nanomaterials and their application in green energy. In particular, synthesis and characterization of novel nanomaterials, their application in solar and fuel cells and batteries, and nanomaterials for a low-toxicity environment are discussed. It will provide an important reference resource for researchers in materials science and renewable energy who wish to learn more about how nanomaterials are used to create cheaper, more efficient green energy products. Provides fundamental information about the properties and application of new low-cost nanomaterials for green energy Shows how novel nanomaterials are used to create more efficient solar cells Offers solutions to common problems related to the use of materials in the development of energy- related technologies

Advanced Nanomaterials for Pollutant Sensing and Environmental Catalysis

Advanced Nanomaterials for Pollutant Sensing and Environmental Catalysis
Author : Qidong Zhao
Publisher : Elsevier
Release Date : 2019-09-13
Category : Technology & Engineering
Total pages :442
GET BOOK

Advanced Nanomaterials for Pollutant Sensing and Environmental Catalysis presents the most recent advances and scientific discoveries in the fields of environmental protection and sensing with nanotechnology. The book's authors highlight recent advancements in how nanotechnology is being used to create more efficient pollution controls, with particular attention given to noble metal nanosensors, novel hollow micro-/nanostructures with innovative functions, and advanced nanocatalysts based on carbon materials for water splitting. Each chapter demonstrates the fundamentals of the technology, illustrating key concepts and highlighting the latest developments and challenges in these multi-disciplinary fields. This book is a valuable resource for academic researchers, graduate students and R&D professionals in the fields of material science, chemistry, environmental science and nanotechnology. Presents the current state-of-the-art and covers the fundamentals and related technologies from a strong chemical, material and environmental engineering background Covers current trends and issues, including nontoxicity, efficiency of decomposition, and the sensitivity of nanomaterials used for sensing and environmental remediation Highlights the benefits and challenges of using nanomaterials to control pollution

Nano-Materials as Photocatalysts for Degradation of Environmental Pollutants

Nano-Materials as Photocatalysts for Degradation of Environmental Pollutants
Author : Pardeep Singh,Anwesha Borthakur,P.K. Mishra,Dhanesh Tiwary
Publisher : Elsevier
Release Date : 2019-12-02
Category : Technology & Engineering
Total pages :430
GET BOOK

Nano-Materials as Photocatalysts for Degradation of Environmental Pollutants: Challenges and Possibilities contains both practical and theoretical aspects of environmental management using the processes of photodegradation and various heterogeneous catalysts. The book's main focus is on the degradation of harmful pollutants, such as petrochemicals, crude oils, dyes, xenobiotic pharmaceutical waste, endocrine disrupting compounds, and other common pollutants. Chapters incorporate both theoretical and practical aspects. This book is useful for undergraduate or university students, teachers and researchers, especially those working in areas of photocatalysis through heterogeneous catalysts. The primary audience for this book includes Chemical Engineers, Environmental Engineers and scientists, scholars working on the management of hazardous waste, scientists working in fields of materials science, and Civil Engineers working on wastewater treatment. Reviews recent trends in the photodegradation of organic pollutants Offers a bibliometric analysis of photocatalysis for environmental abatement Includes many degradation mechanisms of organic pollutants using various catalysts Includes examples on the degradation of organic pollutants from various sources, e.g., pharmaceuticals, dyes, pesticides, etc. Discusses the effect of nanocatalysts on soil, plants and the ecosystem

Advanced Nanomaterials for Wastewater Remediation

Advanced Nanomaterials for Wastewater Remediation
Author : Ravindra Kumar Gautam,Mahesh Chandra Chattopadhyaya
Publisher : CRC Press
Release Date : 2016-08-05
Category : Science
Total pages :430
GET BOOK

Contamination of aqueous environments by hazardous chemical compounds is the direct cause of the decline of safe clean water supply throughout the globe. The use of unconventional water sources such as treated wastewater will be a new norm. Emerging nanotechnological innovations have great potential for wastewater remediation processes. Applications that use smart nanomaterials of inorganic and organic origin improve treatment efficiency and lower energy requirements. This book describes the synthesis, fabrication, and application of advanced nanomaterials in water treatment processes; their adsorption, transformation into low toxic forms, or degradation phenomena, and the adsorption and separation of hazardous dyes, organic pollutants, heavy metals and metalloids from aqueous solutions. It explains the use of different categories of nanomaterials for various pollutants and enhances understanding of nanotechnology-based water remediation to make it less toxic and reusable.

Approaches in Bioremediation

Approaches in Bioremediation
Author : Ram Prasad,Elisabet Aranda
Publisher : Springer
Release Date : 2018-12-08
Category : Science
Total pages :403
GET BOOK

Bioremediation refers to the clean‐up of pollution in soil, groundwater, surface water, and air using typically microbiological processes. It uses naturally occurring bacteria and fungi or plants to degrade, transform or detoxify hazardous substances to human health or the environment. For bioremediation to be effective, microorganisms must enzymatically attack the pollutants and convert them to harmless products. As bioremediation can be effective only where environmental conditions permit microbial growth and action, its application often involves the management of ecological factors to allow microbial growth and degradation to continue at a faster rate. Like other technologies, bioremediation has its limitations. Some contaminants, such as chlorinated organic or high aromatic hydrocarbons, are resistant to microbial attack. They are degraded either gradually or not at all, hence, it is not easy to envisage the rates of clean-up for bioremediation implementation. Bioremediation represents a field of great expansion due to the important development of new technologies. Among them, several decades on metagenomics expansion has led to the detection of autochthonous microbiota that plays a key role during transformation. Transcriptomic guides us to know the expression of key genes and proteomics allow the characterization of proteins that conduct specific reactions. In this book we show specific technologies applied in bioremediation of main interest for research in the field, with special attention on fungi, which have been poorly studied microorganisms. Finally, new approaches in the field, such as CRISPR-CAS9, are also discussed. Lastly, it introduces management strategies, such as bioremediation application for managing affected environment and bioremediation approaches. Examples of successful bioremediation applications are illustrated in radionuclide entrapment and retardation, soil stabilization and remediation of polycyclic aromatic hydrocarbons, phenols, plastics or fluorinated compounds. Other emerging bioremediation methods include electro bioremediation, microbe-availed phytoremediation, genetic recombinant technologies in enhancing plants in accumulation of inorganic metals, and metalloids as well as degradation of organic pollutants, protein-metabolic engineering to increase bioremediation efficiency, including nanotechnology applications are also discussed.

Nanomaterials for Air Remediation

Nanomaterials for Air Remediation
Author : Abdeltif Amrane,Aymen Amine Assadi,Phuong Nguyen-Tri,Tuan Anh Nguyen,Sami Rtimi
Publisher : Elsevier
Release Date : 2020-01-22
Category : Technology & Engineering
Total pages :420
GET BOOK

Nanomaterials for Air Remediation provides a comprehensive description of basic knowledge and current research progress in the field of air treatment using nanomaterials. The book explores how nanomaterials are used in various air remediation techniques, including advanced oxidation processes, biological processes, and filtration. It also covers their combined use as nanocatalysts, nanoantibiotics, nanoadsorbents, nanocontainers, nanofiltrations and nanosensors. Major challenges to using nanomaterials for improving air quality on a mass scale, both practical and regulatory, are also presented. This is an important resource for materials scientists and environmental engineers who are looking to understand how nanotechnology is used to enhance air quality. Includes coverage of a wide range of nanomaterials, from biochemical to chemical materials, and nanomaterials supported photocatalysts Discusses how the properties of nanomaterials are being used to make more efficient air purification systems and products Assesses the practical and regulatory challenges of using different types of nanomaterials for air remediation

Carbon Nanomaterials for Agri-Food and Environmental Applications

Carbon Nanomaterials for Agri-Food and Environmental Applications
Author : Kamel Ahmed Abd-Elsalam
Publisher : Micro & Nano Technologies
Release Date : 2019-11
Category :
Total pages :652
GET BOOK

Carbon Nanomaterials for Agri-food and Environmental Applications discusses the characterization, processing and applications of carbon-based nanostructured materials in the agricultural and environmental sectors. Sections discuss the synthesis and characterization of carbon nanotubes, the technological developments in environmental applications of carbon-based nanomaterials, and agri-food applications. The book also covers the toxic effects of engineered carbon nanoparticles on the environment, and in plants and animals. Finally, quality control and risk management are addressed to assess health and environmental risks. This is an applicable book for graduate students, researchers and those in industrial sectors of science and technology who want to learn more about carbon nanomaterials. Compares a range of carbon-based nanomaterials, showing how they are used for a range of agricultural and environmental applications Discusses the challenges and toxicity of different types of carbon-based nanomaterials for environmental and agricultural applications Explores when different classes of nanomaterial should be used in different environments

Nanotechnology Applications for Improvements in Energy Efficiency and Environmental Management

Nanotechnology Applications for Improvements in Energy Efficiency and Environmental Management
Author : Shah, M. A.
Publisher : IGI Global
Release Date : 2014-07-31
Category : Technology & Engineering
Total pages :478
GET BOOK

As nanoscale research continues to advance, scientists and engineers are developing new applications for many different disciplines, including environmental remediation and energy optimization. Nanotechnology Applications for Improvements in Energy Efficiency and Environmental Management combines up-to-date research findings and relevant theoretical frameworks on the subject of micro-scale technologies being used to promote environmental sustainability. Highlighting the impacts this technology has on energy production and remediation, this book is an all-inclusive reference source for professionals and researchers interested in understanding the multi-disciplinary applications of nanotechnology and nanoscience.

Nanomaterials for Healthcare, Energy and Environment

Nanomaterials for Healthcare, Energy and Environment
Author : Aamir Hussain Bhat,Imran Khan,Mohammad Jawaid,Fakhreldin O. Suliman,Haider Al-Lawati,Salma Muhamed Al-Kindy
Publisher : Springer
Release Date : 2019-08-16
Category : Technology & Engineering
Total pages :227
GET BOOK

This book highlights the various types of nanomaterials currently available and their applications in three major sectors: energy, health, and the environment. It addresses a range of aspects based on the fact that these materials’ structure can be tailored at extremely small scales to achieve specific properties, thus greatly expanding the materials science toolkit. Further, the book pursues a holistic approach to nanomaterial applications by taking into consideration the various stakeholders who use them. It explores several applications that could potentially be used to improve the environment and to more efficiently and cost-effectively produce energy, e.g. by reducing pollutant production during the manufacture of materials, producing solar cells that generate electricity at a competitive cost, cleaning up organic chemicals that pollute groundwater, removing volatile organic compounds (VOCs) from the air, and so on. Given its scope, the book offers a valuable asset for a broad readership, including professionals, students, and researchers from materials science/engineering, polymer science, composite technology, nanotechnology, and biotechnology whose work involves nanomaterials and nanocomposites.

Nanostructured Photocatalysts

Nanostructured Photocatalysts
Author : Rabah Boukherroub,Satishchandra B. OGALE,Neil Robertson
Publisher : Elsevier
Release Date : 2020-06-06
Category : Technology & Engineering
Total pages :300
GET BOOK

Nanostructured Photocatalysts: From Materials to Applications in Solar Fuels and Environmental Remediation addresses the different properties of nanomaterials-based heterogeneous photocatalysis. Heterogeneous nanostructured photocatalysis represents an interesting and viable technique to address issues of climate change and global energy supply. Sustainable hydrogen (H2) fuel production from water via semiconductor photocatalysis, driven by solar energy, is regarded as a viable and sustainable solution to address increasing energy and environmental issues. Similarly, photocatalytic reduction of CO2 with water for the production of hydrocarbons could also be a viable solution. Sections cover band gap tuning, high surface area, the short diffusion path of carriers, and more. Introduces the utilization of nanostructured materials in heterogeneous photocatalysis for hydrogen fuel production via water splitting Explains preparation techniques for different nanomaterials and hybrid nanocomposites, enabling improved sunlight absorption efficiency and enhanced charge separation Assesses the challenges that need to be addressed before this technology can be practically implemented, particularly of identifying cost-effective nanophotocatalysts