June 20, 2021

Download Ebook Free Nanostructured Zinc Oxide

Nanostructured Zinc Oxide

Nanostructured Zinc Oxide
Author : Kamlendra Awasthi
Publisher : Elsevier
Release Date : 2020-09-15
Category : Technology & Engineering
Total pages :525
GET BOOK

Nanostructured Zinc Oxide covers the various routes for the synthesis of different types of nanostructured zinc oxide including; 1D (nanorods, nanowires etc.), 2D and 3D (nanosheets, nanoparticles, nanospheres etc.). This comprehensive overview provides readers with a clear understanding of the various parameters controlling morphologies. The book also reviews key properties of ZnO including optical, electronic, thermal, piezoelectric and surface properties and techniques in order to tailor key properties. There is a large emphasis in the book on ZnO nanostructures and their role in optoelectronics. ZnO is very interesting and widely investigated material for a number of applications. This book presents up-to-date information about the ZnO nanostructures-based applications such as gas sensing, pH sensing, photocatalysis, antibacterial activity, drug delivery, and electrodes for optoelectronics. Reviews methods to synthesize, tailor, and characterize 1D, 2D, and 3D zinc oxide nanostructured materials Discusses key properties of zinc oxide nanostructured materials including optical, electronic, thermal, piezoelectric, and surface properties Addresses most relevant zinc oxide applications in optoelectronics such as light-emitting diodes, solar cells, and sensors

Zinc Oxide Nanostructures

Zinc Oxide Nanostructures
Author : Magnus Willander
Publisher : CRC Press
Release Date : 2014-07-22
Category : Technology & Engineering
Total pages :232
GET BOOK

Zinc oxide (ZnO) in its nanostructured form is emerging as a promising material with great potential for the development of many smart electronic devices. This book presents up-to-date information about various synthesis methods to obtain device-quality ZnO nanostructures. It describes both high-temperature (over 100° C) and low-temperature (under 100° C) approaches to synthesizing ZnO nanostructures; device applications for technical and medical devices, light-emitting diodes, electrochemical sensors, nanogenerators, and photodynamic therapy; and the concept of self-powered devices and systems using ZnO nanostructures. The book emphasizes the utilization of non-conventional substrates such as plastic, paper, and textile as new platforms for developing electronics.

Zinc Oxide Nanostructures: Synthesis and Characterization

Zinc Oxide Nanostructures: Synthesis and Characterization
Author : Sotirios Baskoutas
Publisher : MDPI
Release Date : 2018-12-04
Category : Science
Total pages :302
GET BOOK

This book is a printed edition of the Special Issue "Zinc Oxide Nanostructures: Synthesis and Characterization" that was published in Materials

Nanostructured Zinc Oxide Sensors

Nanostructured Zinc Oxide Sensors
Author : Mohammad Rabia Alenezi
Publisher : Unknown
Release Date : 2014
Category :
Total pages :129
GET BOOK

Recent Progress in Nanostructured Zinc Oxide Grown on Fabric for Wearable Thermoelectric Power Generator with UV Shielding

Recent Progress in Nanostructured Zinc Oxide Grown on Fabric for Wearable Thermoelectric Power Generator with UV Shielding
Author : Pandiyarasan Veluswamy
Publisher : Unknown
Release Date : 2018
Category : Technology
Total pages :129
GET BOOK

Traditional materials for thermoelectric such as bismuth telluride have been studied and utilized commercially for the last half century, but recent advancements in materials selection are one of the principal function of the active thermoelectric device as it determines the reliability of the fabrication regarding technical and economic aspects. Recently, many researcher's efforts have been made to utilize oxide nanomaterials for wearable thermoelectric power generator (WTPG) applications which may provide environmental stable, mechanical flexibility, and light weight with low cost of manufacturing. In precise, fabric containing oxide metals have shown great promise as P−/N-type materials with improved transport and UV shielding properties. On the other hand, we have focused on ZnO nanostructures as a high-efficiency WTPG material because they are non-toxic to skin, inexpensive and easy to obtain and possess attractive electronic properties, which means that they are available for clothing with low-cost fabrication. To our observation, we are chaptering about the thermoelectric properties of ZnO and their composite nanostructures coated cotton fabric via the solvothermal method for the first time.

Nanostructured Zinc Oxide Films for Application in Photovoltaics

Nanostructured Zinc Oxide Films for Application in Photovoltaics
Author : Kuhu Sarkar
Publisher : Unknown
Release Date : 2014
Category :
Total pages :257
GET BOOK

Synthesis and Characterization of Nanostructured Metallic Zinc and Zinc Oxide

Synthesis and Characterization of Nanostructured Metallic Zinc and Zinc Oxide
Author : Amol Muley
Publisher : Open Dissertation Press
Release Date : 2017-01-27
Category :
Total pages :129
GET BOOK

This dissertation, "Synthesis and Characterization of Nanostructured Metallic Zinc and Zinc Oxide" by Amol, Muley, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. Abstract: Abstract of thesis entitled Synthesis and characterization of nanostructured metallic Zinc and Zinc oxide submitted by Amol Muley B.Eng (VNIT, Nagpur) for the degree of Master of Philosophy at The University of Hong Kong in June 2007 In 1965, Gordan Moore predicted the future of integrated circuits technology when he stated that every two years the number of transistors per square inch on integrated circuits would double. This prediction has become a reality, but sustaining this exponential size decrease is a big challenge for the future of IC technology, requiring extensive research into new materials and new processes in order to advance in nanoscale IC technology. In the last few years research has been conducted to fabricate technologically useful nanostructured semi-conducting materials like silicon, gallium arsenide, gallium nitride and zinc oxide. ZnO has been recognized as a promising material, with potential applications in fields such as optoelectronics, laser diodes and field effect transistors. In this study two different approaches, top-down (AFM oxidation lithography) and bottom-up (thermal evaporation) were used to synthesize nanostructured ZnO. The first part of the study demonstrates the local oxidation of metallic zinc induced by a conducting atomic force microscopy (AFM) tip. The effect of factors such as bias voltage, pulse duration and scan speed on the oxidation rate were examined. The oxide growth rate was found to increase linearly with the logarithm of the bias voltage at a constant pulse duration, and to decrease with the oxide height at a constant bias voltage. Increasing the scan speed has the same effect as reducing the pulse duration. The oxidation rate was also found to rise with the relative humidity at a constant temperature, and to drop with temperature at constant far-field humidity. The drop of the oxidation rate with temperature is thought to be due to the localized evaporation of the moisture content from the sample-tip gap region at elevated temperatures. Another potential application of ZnO, the Schottky diode, is also demonstrated. The second part of the study deals with the fabrication of highly facetted, hexagonal-shaped metallic Zn nanocrystals. These nanocrystals were synthesized by a simple catalyst-free thermal evaporation technique on a Si (001) substrate using Zn pellets as the source material. The Zn nanocrystals were characterized by scanning electron microscopy, X-ray diffraction, transmission electron microscopy and energy dispersive X-ray spectroscopy. The nanocrystals of a size range 100-200 nm were {10 10} found to be highly facetted along {0001} and planes. The possibility of the presence of a thin ZnO layer on the surface of the as-deposited Zn nanocrystals was revealed by SAD analyses. This was further confirmed by exposing the Zn nanocrystals to air, which led to the formation of an epitaxial Zn-ZnO core-shell having a similar crystallographic orientation. (414 words) DOI: 10.5353/th_b3910153 Subjects: Zinc oxide Nanocrystals Nanostructured materials - Design and construction

Fabrication and Characterization of Zinc Oxide (Zno) Nanostructures

Fabrication and Characterization of Zinc Oxide (Zno) Nanostructures
Author : Yu-Hang Leung
Publisher : Open Dissertation Press
Release Date : 2017-01-27
Category :
Total pages :129
GET BOOK

This dissertation, "Fabrication and Characterization of Zinc Oxide (ZnO) Nanostructures" by Yu-hang, Leung, 梁宇恆, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. Abstract: Abstract of thesis entitled FABRICATION AND CHARACTERIZATION OF ZINC OXIDE (ZnO) NANOSTRUCTURES Submitted by Leung Yu Hang For the degree of Master of Philosophy at The University of Hong Kong in January 2006 Since the discovery of carbon nanotubes by Iijima in 1991, increasing research effort has been devoted to the synthesis and characterization of nanostructured materials. Materials at this scale exhibit novel properties which cannot be found in their bulk form. In silicon nanowires, for example, the bandgap of Si nanowires increases from 1.1 eV to 3.7 eV when the nanowire diameter decreases from 7 nm to 1.3 nm. In recent years, nanostructures of various semiconductors like Si, gallium arsenide, gallium nitride, and zinc oxide have been demonstrated. Among them, ZnO has been recognized as a promising material for a variety of applications in the field of photonics, optoelectronics, gas sensing, field emission, and piezoelectrics. To realize the incorporation of ZnO nanostructures into real life applications, lots of work need to be done, including synthesis of the nanostructures, and understanding of their properties. In this study, a number of ZnO nanostructures (tetrapods, nanorods, nanoribbons/combs, multipods) were fabricated by thermal evaporation and hydrothermal synthesis methods. The morphologies and, structural and optical properties of the resultant nanostructures were then characterized by various techniques, such as scanning electron microscopy, transmission electron microscopy, selected area electron diffraction, energy dispersive X-ray spectroscopy, X-ray diffractometry, photoluminescence and electron paramagnetic resonance. It was observed that fabrication conditions could significantly affect the properties of the nanostructures. All nanostructures exhibited one UV peak and one broad peak in the visible spectrum. The major difference is that the nanostructures fabricated by thermal evaporation exhibited green PL emission while the nanorods synthesized by hydrothermal method gave yellow emission. Green emission was observed even without the presence of the EPR signal at g 1.96 in some samples. This result contradicts the commonly cited oxygen vacancy hypothesis of green emission of ZnO. Obviously, that hypothesis does not apply to all ZnO samples. The nanorod sample with yellow emission also exhibited strong EPR signal similar to the green emitting sample. A possible explanation for the obtained results is that there are two different deep levels responsible for the green and yellow emission respectively. Stimulated UV emission of three different nanostructures (tetrapods, nanoribbons/combs, and nanorods) was studied by time-resolved photoluminescence (TRPL). It was observed that different nanostructures exhibited different lasing thresholds, emission delay times and decay times. The difference in the lasing behaviors of the nanostructures is likely due to the difference in morphology, mode of cavity, or even native defects present in the material. DOI: 10.5353/th_b3617532 Subjects: Nanostructures Zinc oxide

Zinc Oxide Bulk, Thin Films and Nanostructures

Zinc Oxide Bulk, Thin Films and Nanostructures
Author : Chennupati Jagadish,Stephen J. Pearton
Publisher : Elsevier
Release Date : 2011-10-10
Category : Technology & Engineering
Total pages :600
GET BOOK

With an in-depth exploration of the following topics, this book covers the broad uses of zinc oxide within the fields of materials science and engineering: - Recent advances in bulk , thin film and nanowire growth of ZnO (including MBE, MOCVD and PLD), - The characterization of the resulting material (including the related ternary systems ZgMgO and ZnCdO), - Improvements in device processing modules (including ion implantation for doping and isolation ,Ohmic and Schottky contacts , wet and dry etching), - The role of impurities and defects on materials properties - Applications of ZnO in UV light emitters/detectors, gas, biological and chemical-sensing, transparent electronics, spintronics and thin film

Nanostructures Zinc Oxide (ZnO) Synthesis with Hydrothermal Method

Nanostructures Zinc Oxide (ZnO) Synthesis with Hydrothermal Method
Author : Thamir A. A. Hassan,Ali Q. Tuama
Publisher : Unknown
Release Date : 2016-08-28
Category :
Total pages :112
GET BOOK

ZnO Nanostructures for Tissue Regeneration, Drug-Delivery and Theranostics Applications

ZnO Nanostructures for Tissue Regeneration, Drug-Delivery and Theranostics Applications
Author : Valentina Cauda,Marco Laurenti
Publisher : MDPI
Release Date : 2021-03-25
Category : Science
Total pages :106
GET BOOK

Nanostructured zinc oxide materials are capturing a great deal of interest thanks to their outstanding and multifunctional properties, enabling broad series of intervention in the field of nanomedicine. ZnO can be easily prepared in a broad variety of shapes and shows anticancer and antimicrobial properties that are of interest for tissue engineering, controlled delivery of therapeutics, and even theranostics. This book is thus dedicated to the most recent advances in the field, presented as a collection of research papers and reviews. It spans from the synthesis and characterization of ZnO nanomaterials to their applications in the nanomedicine field, ranging from anticancer nanotherapeutics to dental implants and antibacterial agents.

Zinc Oxide Nanorods

Zinc Oxide Nanorods
Author : Kai-Hang Tam,譚啟鏗
Publisher : Unknown
Release Date : 2017-01-27
Category :
Total pages :129
GET BOOK

This dissertation, "Zinc Oxide Nanorods: Hydrothermal Growth, Properties and Applications" by Kai-hang, Tam, 譚啟鏗, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. Abstract: Abstract of thesis entitled ZINC OXIDE NANORODS: HYDROTHERMAL GROWTH, PROPERTIES AND APPLICATIONS Submitted by Tam Kai Hang for the degree of Master of Philosophy at The University of Hong Kong in December 2007 One-dimensional wide band-gap semiconductor nanostructures, such as nanorods, nanowires and nanobelts, have recently attracted much attention for their potential use as fundamental building blocks for new generation of electronic and photonic devices. Various semiconducting 1-D nanostructures have been synthesized, such as TiO, SnO, 2 2 GaN, GaAs, Si and ZnO. Among these nanostructures, zinc oxide (ZnO) has became particularly intersting in optoelectronic, field emission, gas sensing and biomedicine applications. ZnO is a wide band-gap (3.37 eV) semiconductor with high excitonic binding energy ( 60 meV), and it is non-toxic and environmentally friendly. Hydrothermal growth of ZnO provides an inexpensive method to fabricate large amounts of ZnO nanorods or nanowires on various substrates. However, the controversies still remain about the native defects in ZnO. In this work, ZnO nanorod arrays were fabricated by a hydrothermal method. The structural properties were characterized with scanning electron microscopy (SEM), transmission electron microscopy (TEM) and x-ray diffraction (XRD). Well-oriented nanorods, which exhibited strong defect-related photoluminescence (PL) were obtained. Stimulated UV emission was achieved in forming gas or oxygen annealed nanorods. Change in lasing threshold and defect emission, as well as spontaneous decay time, indicated that yellow defect emission was not caused by interstitial oxygen, which was commonly assumed to be dominant in the yellow emitted ZnO. The origins of defects emissions were investigated by x-ray photoelectron spectroscopy (XPS) and positron annihilation spectroscopy (PAS). The results showed that yellow emission of the as-grown nanorods originated from the presence of Zn(OH) on surface, while the green emission which appeared after annealing was due to the defect complex related to zinc vacancy. On the other hand, it was also observed that green emission originated from grain boundary in other ZnO nanostructures, such as nanoshells. The origin of the green emission has not yet been determined, but there was evidence that the emission was surface-related. Heterojunction of n-ZnO nanorod arrays / p-GaN film light-emitting-diodes (LEDs) were fabricated. Influence of annealing conditions on the performance of devices was examined. It was found that the position of recombination zone was shifted after annealing in some cases. Emission wavelength could be controlled through annealing processes. This study could help improve the performance of these heterojunction devices. In order to have more comprehensive studies on applications of these versatile ZnO nanorods, antibacterial properties of the nanorods were investigated. ZnO nanorods coating have exhibited great antibacterial activity. Other ZnO morphologies (nanoparticles and powder) were also studies for comparison. Mechanisms of ZnO against different bacteria were investigated. It was found that damaging of E. coli cell was partly due to the relaxation of hydrogen peroxide (H O ) from the structures. 2 2 DOI: 10.5353/th_b3955734 Subjects: Zinc oxide Nanostructures Nanotechnology

Zinc Oxide Based Nano Materials and Devices

Zinc Oxide Based Nano Materials and Devices
Author : , Prof. Dr. Ahmed Nahhas
Publisher : BoD – Books on Demand
Release Date : 2019-10-09
Category : Technology & Engineering
Total pages :146
GET BOOK

This book presents a review of recent advances in ZnO-based nanomaterials and devices. ZnO as a nanomaterial has gained substantial interest in the research area of wide bandgap semiconductors and is considered to be one of the major candidates for electronic and photonic applications. ZnO has distinguished and interesting electrical and optical properties and is considered to be a potential material in optoelectronic applications such as solar cells, surface acoustic wave devices, and UV emitters. ZnO's unique properties have attracted several researchers to study its electrical and optical properties. As a nanostructured material, ZnO exhibits many advantages for nanodevices. Moreover, it has the ability to absorb the UV radiation.

Synthesis and Characterization of Nanostructured Metallic Zinc and Zinc Oxide

Synthesis and Characterization of Nanostructured Metallic Zinc and Zinc Oxide
Author : Amol Muley,University of Hong Kong
Publisher : Unknown
Release Date : 2007
Category : Nanocrystals
Total pages :112
GET BOOK

Fabrication and Characterization of Zinc Oxide (ZnO) Nanostructures

Fabrication and Characterization of Zinc Oxide (ZnO) Nanostructures
Author : Yu-hang Leung,University of Hong Kong
Publisher : Unknown
Release Date : 2006
Category : Nanostructures
Total pages :190
GET BOOK