November 28, 2020

Download Ebook Free Numerical Methods For For Roots Of Polynomials

Numerical Methods for Roots of Polynomials -

Numerical Methods for Roots of Polynomials -
Author : J.M. McNamee
Publisher : Elsevier
Release Date : 2007-08-17
Category : Mathematics
Total pages :354
GET BOOK

Numerical Methods for Roots of Polynomials - Part I (along with volume 2 covers most of the traditional methods for polynomial root-finding such as Newton’s, as well as numerous variations on them invented in the last few decades. Perhaps more importantly it covers recent developments such as Vincent’s method, simultaneous iterations, and matrix methods. There is an extensive chapter on evaluation of polynomials, including parallel methods and errors. There are pointers to robust and efficient programs. In short, it could be entitled “A Handbook of Methods for Polynomial Root-finding . This book will be invaluable to anyone doing research in polynomial roots, or teaching a graduate course on that topic. First comprehensive treatment of Root-Finding in several decades Gives description of high-grade software and where it can be down-loaded Very up-to-date in mid-2006; long chapter on matrix methods Includes Parallel methods, errors where appropriate Invaluable for research or graduate course

Numerical Methods for Roots of Polynomials -

Numerical Methods for Roots of Polynomials -
Author : J.M. McNamee,Victor Pan
Publisher : Newnes
Release Date : 2013-07-19
Category : Mathematics
Total pages :728
GET BOOK

Numerical Methods for Roots of Polynomials - Part II along with Part I (9780444527295) covers most of the traditional methods for polynomial root-finding such as interpolation and methods due to Graeffe, Laguerre, and Jenkins and Traub. It includes many other methods and topics as well and has a chapter devoted to certain modern virtually optimal methods. Additionally, there are pointers to robust and efficient programs. This book is invaluable to anyone doing research in polynomial roots, or teaching a graduate course on that topic. First comprehensive treatment of Root-Finding in several decades with a description of high-grade software and where it can be downloaded Offers a long chapter on matrix methods and includes Parallel methods and errors where appropriate Proves invaluable for research or graduate course

Numerical Methods for Roots of Polynomials - Part II

Numerical Methods for Roots of Polynomials - Part II
Author : J.M. McNamee,V.Y. Pan
Publisher : Elsevier Inc. Chapters
Release Date : 2013-07-19
Category : Mathematics
Total pages :728
GET BOOK

We deal here with low-degree polynomials, mostly closed-form solutions. We describe early and modern solutions of the quadratic, and potential errors in these. Again we give the early history of the cubic, and details of Cardan’s solution and Vieta’s trigonometric approach. We consider the discriminant, which decides what type of roots the cubic has. Then we describe several ways (both old and new) of solving the quartic, most of which involve first solving a “resolvent” cubic. The quintic cannot in general be solved by radicals, but can be solved in terms of elliptic or related functions. We describe an algorithm due to Kiepert, which transforms the quintic into a form having no or term; then into a form where the coefficients depend on a single parameter; and later another similar form. This last form can be solved in terms of Weierstrass elliptic and theta functions, and finally the various transformations reversed.

Numerical Methods for Roots of Polynomials

Numerical Methods for Roots of Polynomials
Author : J. M. McNamee,Victor Y. Pan
Publisher : Elsevier Science Limited
Release Date : 2013
Category : Mathematics
Total pages :726
GET BOOK

This book (along with vol. 2) covers most of the traditional methods for polynomial root-finding such as Newton's, as well as numerous variations on them invented in the last few decades. Perhaps more importantly it covers recent developments such as Vincent's method, simultaneous iterations, and matrix methods. There is an extensive chapter on evaluation of polynomials, including parallel methods and errors. There are pointers to robust and efficient programs. In short, it could be entitled "A Handbook of Methods for Polynomial Root-finding". This book will be invaluable to anyone doing research in polynomial roots, or teaching a graduate course on that topic. First comprehensive treatment of Root-Finding in several decades with a description of high-grade software and where it can be downloadedOffers a long chapter on matrix methods and includes Parallel methods and errors where appropriateProves invaluable for research or graduate course.

Numerical Methods for Roots of Polynomials -

Numerical Methods for Roots of Polynomials -
Author : J. M. McNamee,Victor Pan
Publisher : Studies in Computational Mathe
Release Date : 2017-11-13
Category : Mathematics
Total pages :728
GET BOOK

Numerical Methods for Roots of Polynomials - Part II along with Part I (9780444527295) covers most of the traditional methods for polynomial root-finding such as interpolation and methods due to Graeffe, Laguerre, and Jenkins and Traub. It includes many other methods and topics as well and has a chapter devoted to certain modern virtually optimal methods. Additionally, there are pointers to robust and efficient programs. This book is invaluable to anyone doing research in polynomial roots, or teaching a graduate course on that topic. First comprehensive treatment of Root-Finding in several decades witha description of high-grade software and where it can be downloaded Offers a long chapter on matrix methods and includes Parallel methods and errors where appropriate Proves invaluable for research or graduate course "

The Numerical Solution of Systems of Polynomials Arising in Engineering and Science

The Numerical Solution of Systems of Polynomials Arising in Engineering and Science
Author : Andrew J Sommese,Charles W Wampler II
Publisher : World Scientific
Release Date : 2005-03-21
Category : Mathematics
Total pages :424
GET BOOK

' Written by the founders of the new and expanding field of numerical algebraic geometry, this is the first book that uses an algebraic-geometric approach to the numerical solution of polynomial systems and also the first one to treat numerical methods for finding positive dimensional solution sets. The text covers the full theory from methods developed for isolated solutions in the 1980's to the most recent research on positive dimensional sets. Contents:Background:Polynomial SystemsHomotopy ContinuationProjective SpacesGenericity and Probability OnePolynomials of One VariableOther MethodsIsolated Solutions:Coefficient-Parameter HomotopyPolynomial StructuresCase StudiesEndpoint EstimationChecking Results and Other Implementation TipsPositive Dimensional Solutions:Basic Algebraic GeometryBasic Numerical Algebraic GeometryA Cascade Algorithm for Witness SupersetsThe Numerical Irreducible DecompositionThe Intersection of Algebraic SetsAppendices:Algebraic GeometrySoftware for Polynomial ContinuationHomLab User's Guide Readership: Graduate students and researchers in applied mathematics and mechanical engineering. Keywords:Polynomial Systems;Numerical Methods;Homotopy Methods;Mechanical Engineering;Numerical Algebraic Geometry;Kinematics;RoboticsKey Features:Useful introduction to the field for graduate students and researchers in related areasIncludes exercises suitable for classroom use and self-studyIncludes Matlab software to illustrate the methodIncludes many graphical illustrationsIncludes a detailed summary of useful results from algebraic geometryReviews:“The text is written in a very smooth and intelligent form, yielding a readable book whose contents are accessible to a wide class of readers, even to undergraduate students, provided that they accept that some delicate points of some of the proofs could be omitted. Its readability and fast access to the core of the book makes it recommendable as a pleasant read.”Mathematical Reviews “This is an excellent book on numerical solutions of polynomials systems for engineers, scientists and numerical analysts. As pioneers of the field of numerical algebraic geometry, the authors have provided a comprehensive summary of ideas, methods, problems of numerical algebraic geometry and applications to solving polynomial systems. Through the book readers will experience the authors' original ideas, contributions and their techniques in handling practical problems … Many interesting examples from engineering and science have been used throughout the book. Also the exercises are well designed in line with the content, along with the algorithms, sample programs in Matlab and author's own software 'HOMLAB' for polynomial continuation. This is a remarkable book that I recommend to engineers, scientists, researchers, professionals and students, and particularly numerical analysts who will benefit from the rapid development of numerical algebraic geometry.”Zentralblatt MATH '

Initial Approximations and Root Finding Methods

Initial Approximations and Root Finding Methods
Author : Nikolay V. Kyurkchiev
Publisher : Wiley-VCH
Release Date : 1998-10-27
Category : Mathematics
Total pages :180
GET BOOK

Polynomials as mathematical objects have been studied extensively for a long time, and the knowledge collected about them is enormous. Polynomials appear in various fields of applied mathematics and engineering, from mathematics of finance up to signal theory or robust control. The calculation of the roots of a polynomial is a basic problems of numerical mathematics. In this book, an update on iterative methods of calculating simultaneously all roots of a polynomial is given: a survey on basic facts, a lot of methods and properties of those methods connected with the classical task of the approximative determination of roots. For the computer determination the choice of the initial approximation is of special importance. Here the authors offers his new ideas and research results of the last decade which facilitate the practical numerical treatment of polynomials.

Numerical Methods that Work

Numerical Methods that Work
Author : Forman S. Acton
Publisher : MAA
Release Date : 1990
Category : Mathematics
Total pages :549
GET BOOK

A commonsense approach to numerical algorithms for the solution of equations.

Numerical Methods for Engineers and Scientists, Second Edition,

Numerical Methods for Engineers and Scientists, Second Edition,
Author : Joe D. Hoffman,Steven Frankel
Publisher : CRC Press
Release Date : 2001-05-31
Category : Mathematics
Total pages :840
GET BOOK

Emphasizing the finite difference approach for solving differential equations, the second edition of Numerical Methods for Engineers and Scientists presents a methodology for systematically constructing individual computer programs. Providing easy access to accurate solutions to complex scientific and engineering problems, each chapter begins with objectives, a discussion of a representative application, and an outline of special features, summing up with a list of tasks students should be able to complete after reading the chapter- perfect for use as a study guide or for review. The AIAA Journal calls the book "...a good, solid instructional text on the basic tools of numerical analysis."

Handbook of Numerical Methods for the Solution of Algebraic and Transcendental Equations

Handbook of Numerical Methods for the Solution of Algebraic and Transcendental Equations
Author : V. L. Zaguskin
Publisher : Elsevier
Release Date : 2014-05-12
Category : Mathematics
Total pages :216
GET BOOK

Handbook of Numerical Methods for the Solution of Algebraic and Transcendental Equations provides information pertinent to algebraic and transcendental equations. This book indicates a well-grounded plan for the solution of an approximate equation. Organized into six chapters, this book begins with an overview of the solution of various equations. This text then outlines a non-traditional theory of the solution of approximate equations. Other chapters consider the approximate methods for the calculation of roots of algebraic equations. This book discusses as well the methods for making roots more accurate, which are essential in the practical application of Berstoi's method. The final chapter deals with the methods for the solution of simultaneous linear equations, which are divided into direct methods and methods of successive approximation. This book is a valuable resource for students, engineers, and research workers of institutes and industrial enterprises who are using mathematical methods in the solution of technical problems.

Numerical Methods

Numerical Methods
Author : M. K. Jain,Satteluri R. K. Iyengar,Rajinder Kumar Jain
Publisher : New Age International
Release Date : 2007-01-01
Category : Numerical analysis
Total pages :421
GET BOOK

Is An Outline Series Containing Brief Text Of Numerical Solution Of Transcendental And Polynomial Equations, System Of Linear Algebraic Equations And Eigenvalue Problems, Interpolation And Approximation, Differentiation And Integration, Ordinary Differential Equations And Complete Solutions To About 300 Problems. Most Of These Problems Are Given As Unsolved Problems In The Authors Earlier Book. User Friendly Turbo Pascal Programs For Commonly Used Numerical Methods Are Given In The Appendix. This Book Can Be Used As A Text/Help Book Both By Teachers And Students.

Numerically Solving Polynomial Systems with Bertini

Numerically Solving Polynomial Systems with Bertini
Author : Daniel J. Bates,Jonathan D. Hauenstein,Andrew J. Sommese,Charles W. Wampler
Publisher : SIAM
Release Date : 2013-11-08
Category : Science
Total pages :352
GET BOOK

This book is a guide to concepts and practice in numerical algebraic geometry ? the solution of systems of polynomial equations by numerical methods. Through numerous examples, the authors show how to apply the well-received and widely used open-source Bertini software package to compute solutions, including a detailed manual on syntax and usage options. The authors also maintain a complementary web page where readers can find supplementary materials and Bertini input files. Numerically Solving Polynomial Systems with Bertini approaches numerical algebraic geometry from a user's point of view with numerous examples of how Bertini is applicable to polynomial systems. It treats the fundamental task of solving a given polynomial system and describes the latest advances in the field, including algorithms for intersecting and projecting algebraic sets, methods for treating singular sets, the nascent field of real numerical algebraic geometry, and applications to large polynomial systems arising from differential equations. Those who wish to solve polynomial systems can start gently by finding isolated solutions to small systems, advance rapidly to using algorithms for finding positive-dimensional solution sets (curves, surfaces, etc.), and learn how to use parallel computers on large problems. These techniques are of interest to engineers and scientists in fields where polynomial equations arise, including robotics, control theory, economics, physics, numerical PDEs, and computational chemistry.

Numerical Methods: With Programs In C

Numerical Methods: With Programs In C
Author : Veerarajan & Ramachandran
Publisher : Tata McGraw-Hill Education
Release Date : 2005-11-01
Category : C (Computer program language)
Total pages :129
GET BOOK

Numerical Methods for Scientists and Engineers

Numerical Methods for Scientists and Engineers
Author : H.M. Antia
Publisher : Springer Science & Business Media
Release Date : 2002-05-01
Category : Mathematics
Total pages :842
GET BOOK

This book presents an exhaustive and in-depth exposition of the various numerical methods used in scientific and engineering computations. It emphasises the practical aspects of numerical computation and discusses various techniques in sufficient detail to enable their implementation in solving a wide range of problems.

Numerical Methods for Engineers

Numerical Methods for Engineers
Author : Santosh K Gupta
Publisher : New Age International
Release Date : 1995
Category : Differential quations
Total pages :407
GET BOOK

This Book Is Intended To Be A Text For Either A First Or A Second Course In Numerical Methods For Students In All Engineering Disciplines. Difficult Concepts, Which Usually Pose Problems To Students Are Explained In Detail And Illustrated With Solved Examples. Enough Elementary Material That Could Be Covered In The First-Level Course Is Included, For Example, Methods For Solving Linear And Nonlinear Algebraic Equations, Interpolation, Differentiation, Integration, And Simple Techniques For Integrating Odes And Pdes (Ordinary And Partial Differential Equations).Advanced Techniques And Concepts That Could Form Part Of A Second-Level Course Includegears Method For Solving Ode-Ivps (Initial Value Problems), Stiffness Of Ode- Ivps, Multiplicity Of Solutions, Convergence Characteristics, The Orthogonal Collocation Method For Solving Ode-Bvps (Boundary Value Problems) And Finite Element Techniques. An Extensive Set Of Graded Problems, Often With Hints, Has Been Included.Some Involve Simple Applications Of The Concepts And Can Be Solved Using A Calculator, While Several Are From Real-Life Situations And Require Writing Computer Programs Or Use Of Library Subroutines. Practice On These Is Expected To Build Up The Reader'S Confidence In Developing Large Computer Codes.