December 1, 2020

Download Ebook Free On-Chip Communication Architectures

On-Chip Communication Architectures

On-Chip Communication Architectures
Author : Sudeep Pasricha,Nikil Dutt
Publisher : Morgan Kaufmann
Release Date : 2010-07-28
Category : Technology & Engineering
Total pages :544
GET BOOK

Over the past decade, system-on-chip (SoC) designs have evolved to address the ever increasing complexity of applications, fueled by the era of digital convergence. Improvements in process technology have effectively shrunk board-level components so they can be integrated on a single chip. New on-chip communication architectures have been designed to support all inter-component communication in a SoC design. These communication architecture fabrics have a critical impact on the power consumption, performance, cost and design cycle time of modern SoC designs. As application complexity strains the communication backbone of SoC designs, academic and industrial R&D efforts and dollars are increasingly focused on communication architecture design. On-Chip Communication Architecures is a comprehensive reference on concepts, research and trends in on-chip communication architecture design. It will provide readers with a comprehensive survey, not available elsewhere, of all current standards for on-chip communication architectures. A definitive guide to on-chip communication architectures, explaining key concepts, surveying research efforts and predicting future trends Detailed analysis of all popular standards for on-chip communication architectures Comprehensive survey of all research on communication architectures, covering a wide range of topics relevant to this area, spanning the past several years, and up to date with the most current research efforts Future trends that with have a significant impact on research and design of communication architectures over the next several years

Communication Architectures for Systems-on-Chip

Communication Architectures for Systems-on-Chip
Author : José L. Ayala
Publisher : CRC Press
Release Date : 2018-09-03
Category : Computers
Total pages :449
GET BOOK

A presentation of state-of-the-art approaches from an industrial applications perspective, Communication Architectures for Systems-on-Chip shows professionals, researchers, and students how to attack the problem of data communication in the manufacture of SoC architectures. With its lucid illustration of current trends and research improving the performance, quality, and reliability of transactions, this is an essential reference for anyone dealing with communication mechanisms for embedded systems, systems-on-chip, and multiprocessor architectures—or trying to overcome existing limitations. Exploring architectures currently implemented in manufactured SoCs—and those being proposed—this book analyzes a wide range of applications, including: Well-established communication buses Less common networks-on-chip Modern technologies that include the use of carbon nanotubes (CNTs) Optical links used to speed up data transfer and boost both security and quality of service (QoS) The book’s contributors pay special attention to newer problems, including how to protect transactions of critical on-chip information (personal data, security keys, etc.) from an external attack. They examine mechanisms, revise communication protocols involved, and analyze overall impact on system performance.

Modeling, Analysis and Optimization of Network-on-Chip Communication Architectures

Modeling, Analysis and Optimization of Network-on-Chip Communication Architectures
Author : Umit Y. Ogras,Radu Marculescu
Publisher : Springer Science & Business Media
Release Date : 2013-03-12
Category : Technology & Engineering
Total pages :174
GET BOOK

Traditionally, design space exploration for Systems-on-Chip (SoCs) has focused on the computational aspects of the problem at hand. However, as the number of components on a single chip and their performance continue to increase, the communication architecture plays a major role in the area, performance and energy consumption of the overall system. As a result, a shift from computation-based to communication-based design becomes mandatory. Towards this end, network-on-chip (NoC) communication architectures have emerged recently as a promising alternative to classical bus and point-to-point communication architectures. In this dissertation, we study outstanding research problems related to modeling, analysis and optimization of NoC communication architectures. More precisely, we present novel design methodologies, software tools and FPGA prototypes to aid the design of application-specific NoCs.

On-chip Communication

On-chip Communication
Author : Kanishka Lahiri
Publisher : Unknown
Release Date : 2003
Category :
Total pages :452
GET BOOK

COMMSYN

COMMSYN
Author : Sudeep Pasricha
Publisher : Unknown
Release Date : 2008
Category :
Total pages :412
GET BOOK

Such a multi-faceted synthesis framework accrues many benefits for MPSoC designs such as improved design reliability and quality, better complexity management, reduced system cost and a faster time-to-market. The experiments on several industrial strength applications demonstrate the utility of the automated and comprehensive synthesis framework for MPSoC designs.

Network-on-Chip

Network-on-Chip
Author : Santanu Kundu,Santanu Chattopadhyay
Publisher : CRC Press
Release Date : 2018-09-03
Category : Technology & Engineering
Total pages :388
GET BOOK

Addresses the Challenges Associated with System-on-Chip Integration Network-on-Chip: The Next Generation of System-on-Chip Integration examines the current issues restricting chip-on-chip communication efficiency, and explores Network-on-chip (NoC), a promising alternative that equips designers with the capability to produce a scalable, reusable, and high-performance communication backbone by allowing for the integration of a large number of cores on a single system-on-chip (SoC). This book provides a basic overview of topics associated with NoC-based design: communication infrastructure design, communication methodology, evaluation framework, and mapping of applications onto NoC. It details the design and evaluation of different proposed NoC structures, low-power techniques, signal integrity and reliability issues, application mapping, testing, and future trends. Utilizing examples of chips that have been implemented in industry and academia, this text presents the full architectural design of components verified through implementation in industrial CAD tools. It describes NoC research and developments, incorporates theoretical proofs strengthening the analysis procedures, and includes algorithms used in NoC design and synthesis. In addition, it considers other upcoming NoC issues, such as low-power NoC design, signal integrity issues, NoC testing, reconfiguration, synthesis, and 3-D NoC design. This text comprises 12 chapters and covers: The evolution of NoC from SoC—its research and developmental challenges NoC protocols, elaborating flow control, available network topologies, routing mechanisms, fault tolerance, quality-of-service support, and the design of network interfaces The router design strategies followed in NoCs The evaluation mechanism of NoC architectures The application mapping strategies followed in NoCs Low-power design techniques specifically followed in NoCs The signal integrity and reliability issues of NoC The details of NoC testing strategies reported so far The problem of synthesizing application-specific NoCs Reconfigurable NoC design issues Direction of future research and development in the field of NoC Network-on-Chip: The Next Generation of System-on-Chip Integration covers the basic topics, technology, and future trends relevant to NoC-based design, and can be used by engineers, students, and researchers and other industry professionals interested in computer architecture, embedded systems, and parallel/distributed systems.

Networks-on-Chips

Networks-on-Chips
Author : Fayez Gebali,Haytham Elmiligi,Mohamed Watheq El-Kharashi
Publisher : CRC Press
Release Date : 2011-06-03
Category : Technology & Engineering
Total pages :389
GET BOOK

The implementation of networks-on-chip (NoC) technology in VLSI integration presents a variety of unique challenges. To deal with specific design solutions and research hurdles related to intra-chip data exchange, engineers are challenged to invoke a wide range of disciplines and specializations while maintaining a focused approach. Leading Researchers Present Cutting-Edge Designs Tools Networks-on-Chips: Theory and Practice facilitates this process, detailing the NoC paradigm and its benefits in separating IP design and functionality from chip communication requirements and interfacing. It starts with an analysis of 3-D NoC architectures and progresses to a discussion of NoC resource allocation, processor traffic modeling, and formal verification, with an examination of protocols at different layers of abstraction. An exploration of design methodologies, CAD tool development, and system testing, as well as communication protocol, the text highlights important emerging research issues, such as Resource Allocation for Quality of Service (QoS) on-chip communication Testing, verification, and network design methodologies Architectures for interconnection, real-time monitoring, and security requirements Networks-on-Chip Protocols Presents a flexible MPSoC platform to easily implement multimedia applications and evaluate future video encoding standards This useful guide tackles power and energy issues in NoC-based designs, addressing the power constraints that currently limit the embedding of more processing elements on a single chip. It covers traffic modeling and discusses the details of traffic generators. Using unique case studies and examples, it covers theoretical and practical issues, guiding readers through every phase of system design.

Designing 2D and 3D Network-on-Chip Architectures

Designing 2D and 3D Network-on-Chip Architectures
Author : Konstantinos Tatas,Kostas Siozios,Dimitrios Soudris,Axel Jantsch
Publisher : Springer Science & Business Media
Release Date : 2013-10-08
Category : Technology & Engineering
Total pages :265
GET BOOK

This book covers key concepts in the design of 2D and 3D Network-on-Chip interconnect. It highlights design challenges and discusses fundamentals of NoC technology, including architectures, algorithms and tools. Coverage focuses on topology exploration for both 2D and 3D NoCs, routing algorithms, NoC router design, NoC-based system integration, verification and testing, and NoC reliability. Case studies are used to illuminate new design methodologies.

Networks on Chips

Networks on Chips
Author : Giovanni De Micheli,Luca Benini
Publisher : Elsevier
Release Date : 2006-08-30
Category : Technology & Engineering
Total pages :408
GET BOOK

The design of today's semiconductor chips for various applications, such as telecommunications, poses various challenges due to the complexity of these systems. These highly complex systems-on-chips demand new approaches to connect and manage the communication between on-chip processing and storage components and networks on chips (NoCs) provide a powerful solution. This book is the first to provide a unified overview of NoC technology. It includes in-depth analysis of all the on-chip communication challenges, from physical wiring implementation up to software architecture, and a complete classification of their various Network-on-Chip approaches and solutions. * Leading-edge research from world-renowned experts in academia and industry with state-of-the-art technology implementations/trends * An integrated presentation not currently available in any other book * A thorough introduction to current design methodologies and chips designed with NoCs

Network-on-Chip Architectures

Network-on-Chip Architectures
Author : Chrysostomos Nicopoulos,Vijaykrishnan Narayanan,Chita R. Das
Publisher : Springer Science & Business Media
Release Date : 2009-09-18
Category : Technology & Engineering
Total pages :223
GET BOOK

[2]. The Cell Processor from Sony, Toshiba and IBM (STI) [3], and the Sun UltraSPARC T1 (formerly codenamed Niagara) [4] signal the growing popularity of such systems. Furthermore, Intel’s very recently announced 80-core TeraFLOP chip [5] exemplifies the irreversible march toward many-core systems with tens or even hundreds of processing elements. 1.2 The Dawn of the Communication-Centric Revolution The multi-core thrust has ushered the gradual displacement of the computati- centric design model by a more communication-centric approach [6]. The large, sophisticated monolithic modules are giving way to several smaller, simpler p- cessing elements working in tandem. This trend has led to a surge in the popularity of multi-core systems, which typically manifest themselves in two distinct incarnations: heterogeneous Multi-Processor Systems-on-Chip (MPSoC) and homogeneous Chip Multi-Processors (CMP). The SoC philosophy revolves around the technique of Platform-Based Design (PBD) [7], which advocates the reuse of Intellectual Property (IP) cores in flexible design templates that can be customized accordingly to satisfy the demands of particular implementations. The appeal of such a modular approach lies in the substantially reduced Time-To- Market (TTM) incubation period, which is a direct outcome of lower circuit complexity and reduced design effort. The whole system can now be viewed as a diverse collection of pre-existing IP components integrated on a single die.

Advanced Multicore Systems-On-Chip

Advanced Multicore Systems-On-Chip
Author : Abderazek Ben Abdallah
Publisher : Springer
Release Date : 2017-09-10
Category : Computers
Total pages :273
GET BOOK

From basic architecture, interconnection, and parallelization to power optimization, this book provides a comprehensive description of emerging multicore systems-on-chip (MCSoCs) hardware and software design. Highlighting both fundamentals and advanced software and hardware design, it can serve as a primary textbook for advanced courses in MCSoCs design and embedded systems. The first three chapters introduce MCSoCs architectures, present design challenges and conventional design methods, and describe in detail the main building blocks of MCSoCs. Chapters 4, 5, and 6 discuss fundamental and advanced on-chip interconnection network technologies for multi and many core SoCs, enabling readers to understand the microarchitectures for on-chip routers and network interfaces that are essential in the context of latency, area, and power constraints. With the rise of multicore and many-core systems, concurrency is becoming a major issue in the daily life of a programmer. Thus, compiler and software development tools are critical in helping programmers create high-performance software. Programmers should make sure that their parallelized program codes will not cause race condition, memory-access deadlocks, or other faults that may crash their entire systems. As such, Chapter 7 describes a novel parallelizing compiler design for high-performance computing. Chapter 8 provides a detailed investigation of power reduction techniques for MCSoCs at component and network levels. It discusses energy conservation in general hardware design, and also in embedded multicore system components, such as CPUs, disks, displays and memories. Lastly, Chapter 9 presents a real embedded MCSoCs system design targeted for health monitoring in the elderly.

Multiprocessor Systems-on-chips

Multiprocessor Systems-on-chips
Author : Ahmed Amine Jerraya,Wayne Wolf
Publisher : Morgan Kaufmann
Release Date : 2005
Category : Computers
Total pages :581
GET BOOK

The first book to survey this emerging field in digital system design.

Runtime Adaptive System-on-Chip Communication Architecture

Runtime Adaptive System-on-Chip Communication Architecture
Author : Mohammad Abdullah al Faruque
Publisher : Unknown
Release Date : 2009
Category :
Total pages :129
GET BOOK

Sustainable Wireless Network-on-Chip Architectures

Sustainable Wireless Network-on-Chip Architectures
Author : Jacob Murray,Paul Wettin,Partha Pratim Pande,Behrooz Shirazi
Publisher : Morgan Kaufmann
Release Date : 2016-03-25
Category : Computers
Total pages :162
GET BOOK

Sustainable Wireless Network-on-Chip Architectures focuses on developing novel Dynamic Thermal Management (DTM) and Dynamic Voltage and Frequency Scaling (DVFS) algorithms that exploit the advantages inherent in WiNoC architectures. The methodologies proposed—combined with extensive experimental validation—collectively represent efforts to create a sustainable NoC architecture for future many-core chips. Current research trends show a necessary paradigm shift towards green and sustainable computing. As implementing massively parallel energy-efficient CPUs and reducing resource consumption become standard, and their speed and power continuously increase, energy issues become a significant concern. The need for promoting research in sustainable computing is imperative. As hundreds of cores are integrated in a single chip, designing effective packages for dissipating maximum heat is infeasible. Moreover, technology scaling is pushing the limits of affordable cooling, thereby requiring suitable design techniques to reduce peak temperatures. Addressing thermal concerns at different design stages is critical to the success of future generation systems. DTM and DVFS appear as solutions to avoid high spatial and temporal temperature variations among NoC components, and thereby mitigate local network hotspots. Defines new complex, sustainable network-on-chip architectures to reduce network latency and energy Develops topology-agnostic dynamic thermal management and dynamic voltage and frequency scaling techniques Describes joint strategies for network- and core-level sustainability Discusses novel algorithms that exploit the advantages inherent in Wireless Network-on-Chip architectures

Routing Algorithms in Networks-on-Chip

Routing Algorithms in Networks-on-Chip
Author : Maurizio Palesi,Masoud Daneshtalab
Publisher : Springer Science & Business Media
Release Date : 2013-10-22
Category : Technology & Engineering
Total pages :410
GET BOOK

This book provides a single-source reference to routing algorithms for Networks-on-Chip (NoCs), as well as in-depth discussions of advanced solutions applied to current and next generation, many core NoC-based Systems-on-Chip (SoCs). After a basic introduction to the NoC design paradigm and architectures, routing algorithms for NoC architectures are presented and discussed at all abstraction levels, from the algorithmic level to actual implementation. Coverage emphasizes the role played by the routing algorithm and is organized around key problems affecting current and next generation, many-core SoCs. A selection of routing algorithms is included, specifically designed to address key issues faced by designers in the ultra-deep sub-micron (UDSM) era, including performance improvement, power, energy, and thermal issues, fault tolerance and reliability.