November 24, 2020

Download Ebook Free Quantum Information Processing And Quantum Error Correction

Quantum Information Processing and Quantum Error Correction

Quantum Information Processing and Quantum Error Correction
Author : Ivan Djordjevic
Publisher : Academic Press
Release Date : 2012
Category : Technology & Engineering
Total pages :576
GET BOOK

Quantum Information Processing and Quantum Error Correction is a self-contained, tutorial-based introduction to quantum information, quantum computation, and quantum error-correction. Assuming no knowledge of quantum mechanics and written at an intuitive level suitable for the engineer, the book gives all the essential principles needed to design and implement quantum electronic and photonic circuits. Numerous examples from a wide area of application are given to show how the principles can be implemented in practice. This book is ideal for the electronics, photonics and computer engineer who requires an easy- to-understand foundation on the principles of quantum information processing and quantum error correction, together with insight into how to develop quantum electronic and photonic circuits. Readers of this book will be ready for further study in this area, and will be prepared to perform independent research. The reader completed the book will be able design the information processing circuits, stabilizer codes, Calderbank-Shor-Steane (CSS) codes, subsystem codes, topological codes and entanglement-assisted quantum error correction codes; and propose corresponding physical implementation. The reader completed the book will be proficient in quantum fault-tolerant design as well. Unique Features Unique in covering both quantum information processing and quantum error correction - everything in one book that an engineer needs to understand and implement quantum-level circuits. Gives an intuitive understanding by not assuming knowledge of quantum mechanics, thereby avoiding heavy mathematics. In-depth coverage of the design and implementation of quantum information processing and quantum error correction circuits. Provides the right balance among the quantum mechanics, quantum error correction, quantum computing and quantum communication. Dr. Djordjevic is an Assistant Professor in the Department of Electrical and Computer Engineering of College of Engineering, University of Arizona, with a joint appointment in the College of Optical Sciences. Prior to this appointment in August 2006, he was with University of Arizona, Tucson, USA (as a Research Assistant Professor); University of the West of England, Bristol, UK; University of Bristol, Bristol, UK; Tyco Telecommunications, Eatontown, USA; and National Technical University of Athens, Athens, Greece. His current research interests include optical networks, error control coding, constrained coding, coded modulation, turbo equalization, OFDM applications, and quantum error correction. He presently directs the Optical Communications Systems Laboratory (OCSL) within the ECE Department at the University of Arizona. Provides everything an engineer needs in one tutorial-based introduction to understand and implement quantum-level circuits Avoids the heavy use of mathematics by not assuming the previous knowledge of quantum mechanics Provides in-depth coverage of the design and implementation of quantum information processing and quantum error correction circuits

Quantum Information Processing and Quantum Error Correction

Quantum Information Processing and Quantum Error Correction
Author : Ivan Djordjevic
Publisher : Academic Press
Release Date : 2012-05-23
Category : Science
Total pages :600
GET BOOK

Quantum Information Processing and Quantum Error Correction is a self-contained, tutorial-based introduction to quantum information, quantum computation, and quantum error-correction. Assuming no knowledge of quantum mechanics and written at an intuitive level suitable for the engineer, the book gives all the essential principles needed to design and implement quantum electronic and photonic circuits. Numerous examples from a wide area of application are given to show how the principles can be implemented in practice. This book is ideal for the electronics, photonics and computer engineer who requires an easy- to-understand foundation on the principles of quantum information processing and quantum error correction, together with insight into how to develop quantum electronic and photonic circuits. Readers of this book will be ready for further study in this area, and will be prepared to perform independent research. The reader completed the book will be able design the information processing circuits, stabilizer codes, Calderbank-Shor-Steane (CSS) codes, subsystem codes, topological codes and entanglement-assisted quantum error correction codes; and propose corresponding physical implementation. The reader completed the book will be proficient in quantum fault-tolerant design as well. Unique Features Unique in covering both quantum information processing and quantum error correction – everything in one book that an engineer needs to understand and implement quantum-level circuits. Gives an intuitive understanding by not assuming knowledge of quantum mechanics, thereby avoiding heavy mathematics. In-depth coverage of the design and implementation of quantum information processing and quantum error correction circuits. Provides the right balance among the quantum mechanics, quantum error correction, quantum computing and quantum communication. Dr. Djordjevic is an Assistant Professor in the Department of Electrical and Computer Engineering of College of Engineering, University of Arizona, with a joint appointment in the College of Optical Sciences. Prior to this appointment in August 2006, he was with University of Arizona, Tucson, USA (as a Research Assistant Professor); University of the West of England, Bristol, UK; University of Bristol, Bristol, UK; Tyco Telecommunications, Eatontown, USA; and National Technical University of Athens, Athens, Greece. His current research interests include optical networks, error control coding, constrained coding, coded modulation, turbo equalization, OFDM applications, and quantum error correction. He presently directs the Optical Communications Systems Laboratory (OCSL) within the ECE Department at the University of Arizona. Provides everything an engineer needs in one tutorial-based introduction to understand and implement quantum-level circuits Avoids the heavy use of mathematics by not assuming the previous knowledge of quantum mechanics Provides in-depth coverage of the design and implementation of quantum information processing and quantum error correction circuits

Quantum Information Processing, Quantum Computing, and Quantum Error Correction

Quantum Information Processing, Quantum Computing, and Quantum Error Correction
Author : Ivan Djordjevic
Publisher : Academic Press
Release Date : 2021-02-01
Category : Science
Total pages :600
GET BOOK

This book is a self-contained introduction to quantum information, quantum computation, quantum error-correction. The book starts with basic principles of quantum mechanics including state vectors, operators, density operators, measurements, and dynamics of a quantum system. It continues with fundamental principles of quantum computation, basic quantum gates, basic quantum algorithms, and fundamentals of quantum information processing. A significant space in the book will be spent on quantum error correction codes (QECCs), in particular on stabilizer codes, Calderbank-Shor-Steane (CSS) codes, quantum low-density parity-check (LDPC) codes, entanglement-assisted QECCs, topological codes, and surface codes. The book continues with quantum information theory, and quantum key distribution (QKD). The book continues with fault-tolerant information processing and fault-tolerant quantum error correction, together with a chapter on quantum machine learning. The next part of the book is spent investigating physical realizations of quantum computers, encoders and decoders; including photonic quantum realization, cavity quantum electrodynamics, and ion traps. A self-contained introduction to quantum information processing, and quantum error correction Integrates quantum information processing, quantum computing, and quantum error correction Describes the latest trends in the quantum information processing, quantum error correction and quantum computing Presents the basic concepts of quantum mechanics In-depth presentation of the design and realization of a quantum information processing and quantum error correction circuit

Quantum Error Correction

Quantum Error Correction
Author : Daniel A. Lidar,Todd A. Brun
Publisher : Cambridge University Press
Release Date : 2013-09-12
Category : Science
Total pages :592
GET BOOK

Quantum computation and information is one of the most exciting developments in science and technology of the last twenty years. To achieve large scale quantum computers and communication networks it is essential not only to overcome noise in stored quantum information, but also in general faulty quantum operations. Scalable quantum computers require a far-reaching theory of fault-tolerant quantum computation. This comprehensive text, written by leading experts in the field, focuses on quantum error correction and thoroughly covers the theory as well as experimental and practical issues. The book is not limited to a single approach, but reviews many different methods to control quantum errors, including topological codes, dynamical decoupling and decoherence-free subspaces. Basic subjects as well as advanced theory and a survey of topics from cutting-edge research make this book invaluable both as a pedagogical introduction at the graduate level and as a reference for experts in quantum information science.

Classical and Quantum Information

Classical and Quantum Information
Author : Dan C. Marinescu
Publisher : Academic Press
Release Date : 2011-01-07
Category : Mathematics
Total pages :744
GET BOOK

A new discipline, Quantum Information Science, has emerged in the last two decades of the twentieth century at the intersection of Physics, Mathematics, and Computer Science. Quantum Information Processing is an application of Quantum Information Science which covers the transformation, storage, and transmission of quantum information; it represents a revolutionary approach to information processing. Classical and Quantum Information covers topics in quantum computing, quantum information theory, and quantum error correction, three important areas of quantum information processing. Quantum information theory and quantum error correction build on the scope, concepts, methodology, and techniques developed in the context of their close relatives, classical information theory and classical error correcting codes. Presents recent results in quantum computing, quantum information theory, and quantum error correcting codes Covers both classical and quantum information theory and error correcting codes The last chapter of the book covers physical implementation of quantum information processing devices Covers the mathematical formalism and the concepts in Quantum Mechanics critical for understanding the properties and the transformations of quantum information

Quantum Computation and Quantum Information

Quantum Computation and Quantum Information
Author : Michael A. Nielsen,Isaac L. Chuang
Publisher : Cambridge University Press
Release Date : 2010-12-09
Category : Science
Total pages :129
GET BOOK

One of the most cited books in physics of all time, Quantum Computation and Quantum Information remains the best textbook in this exciting field of science. This 10th anniversary edition includes an introduction from the authors setting the work in context. This comprehensive textbook describes such remarkable effects as fast quantum algorithms, quantum teleportation, quantum cryptography and quantum error-correction. Quantum mechanics and computer science are introduced before moving on to describe what a quantum computer is, how it can be used to solve problems faster than 'classical' computers and its real-world implementation. It concludes with an in-depth treatment of quantum information. Containing a wealth of figures and exercises, this well-known textbook is ideal for courses on the subject, and will interest beginning graduate students and researchers in physics, computer science, mathematics, and electrical engineering.

Quantum Computing

Quantum Computing
Author : Eleanor Rieffel,Wolfgang Polak
Publisher : Scientific and Engineering Computation
Release Date : 2014-05-09
Category : Computers
Total pages :372
GET BOOK

"The text covers the basic building blocks of quantum information processing, quantum bits and quantum gates, showing their relationship to the key quantum concepts of quantum measurement, quantum state transformation, and entanglement between quantum subsystems; it treats quantum algorithms, discussing notions of complexity and describing a number of simple algorithms as well as the most significant algorithms to date; and it explores entanglement and robust quantum computation, investigating such topics as quantifying entanglement, decoherence, quantum error correction, and fault tolerance."--Back cover.

Quantum Computation and Quantum Information Theory

Quantum Computation and Quantum Information Theory
Author : Chiara Macchiavello,G. M. Palma,Anton Zeilinger
Publisher : World Scientific
Release Date : 2000
Category : Science
Total pages :517
GET BOOK

Quantum Entanglement Manipulation - Quantum Algorithms - Quantum Complexity - Quantum Error Correction - Quantum Channels - Entanglement Purification and Long-Distance Quantum Communication - Quantum Key Distribution - Cavity Quantum Electrodynamics - Quantum Computation with Ion Traps - Josephson Junctions and Quantum Computation - Quantum Computing in Optical Lattices - Quantum Computation and Quantum Communication with Electrons - NMR Quantum Computing.

Quantum Error Correction and Fault Tolerant Quantum Computing

Quantum Error Correction and Fault Tolerant Quantum Computing
Author : Frank Gaitan
Publisher : CRC Press
Release Date : 2018-10-03
Category : Computers
Total pages :312
GET BOOK

It was once widely believed that quantum computation would never become a reality. However, the discovery of quantum error correction and the proof of the accuracy threshold theorem nearly ten years ago gave rise to extensive development and research aimed at creating a working, scalable quantum computer. Over a decade has passed since this monumental accomplishment yet no book-length pedagogical presentation of this important theory exists. Quantum Error Correction and Fault Tolerant Quantum Computing offers the first full-length exposition on the realization of a theory once thought impossible. It provides in-depth coverage on the most important class of codes discovered to date—quantum stabilizer codes. It brings together the central themes of quantum error correction and fault-tolerant procedures to prove the accuracy threshold theorem for a particular noise error model. The author also includes a derivation of well-known bounds on the parameters of quantum error correcting code. Packed with over 40 real-world problems, 35 field exercises, and 17 worked-out examples, this book is the essential resource for any researcher interested in entering the quantum field as well as for those who want to understand how the unexpected realization of quantum computing is possible.

Quantum Processes Systems, and Information

Quantum Processes Systems, and Information
Author : Benjamin Schumacher,Michael Westmoreland
Publisher : Cambridge University Press
Release Date : 2010-03-25
Category : Science
Total pages :129
GET BOOK

A new and exciting approach to the basics of quantum theory, this undergraduate textbook contains extensive discussions of conceptual puzzles and over 800 exercises and problems. Beginning with three elementary 'qubit' systems, the book develops the formalism of quantum theory, addresses questions of measurement and distinguishability, and explores the dynamics of quantum systems. In addition to the standard topics covered in other textbooks, it also covers communication and measurement, quantum entanglement, entropy and thermodynamics, and quantum information processing. This textbook gives a broad view of quantum theory by emphasizing dynamical evolution, and exploring conceptual and foundational issues. It focuses on contemporary topics, including measurement, time evolution, open systems, quantum entanglement, and the role of information.

Quantum Information Processing

Quantum Information Processing
Author : Thomas Beth,Gerd Leuchs
Publisher : John Wiley & Sons
Release Date : 2006-03-06
Category : Science
Total pages :471
GET BOOK

Quantum processing and communication is emerging as a challenging technique at the beginning of the new millennium. This is an up-to-date insight into the current research of quantum superposition, entanglement, and the quantum measurement process - the key ingredients of quantum information processing. The authors further address quantum protocols and algorithms. Complementary to similar programmes in other countries and at the European level, the German Research Foundation (DFG) realized a focused research program on quantum information. The contributions - written by leading experts - bring together the latest results in quantum information as well as addressing all the relevant questions.

Quantum Information Processing

Quantum Information Processing
Author : Dimitris G. Angelakis
Publisher : IOS Press
Release Date : 2006
Category : Science
Total pages :359
GET BOOK

"The Antikythera mechanism was probably the worlds first analog computer a sophisticated device for calculating the motions of stars and planets. This remarkable assembly of more than 30 gears with a differential mechanism, made on Rhodes or Cos in the first century B.C., revised the view of what the ancient Greeks were capable of creating at that time. A comparable level of engineering didnt become widespread until the industrial revolution nearly two millennia later. This collection of papers provides a good overview of the current state-of-the-art of quantum information science. We do not know how a quantum Antikythera will look like but all we know is that the best way to predict the future is to create it. From the perspective of the future, it may well be that the real computer age has not yet even begun."

Quantum Entanglement and Information Processing

Quantum Entanglement and Information Processing
Author : Anonim
Publisher : Elsevier
Release Date : 2004-11-05
Category : Science
Total pages :638
GET BOOK

It has been recognised recently that the strange features of the quantum world could be used for new information transmission or processing functions such as quantum cryptography or, more ambitiously, quantum computing. These fascinating perspectives renewed the interest in fundamental quantum properties and lead to important theoretical advances, such as quantum algorithms and quantum error correction codes. On the experimental side, remarkable advances have been achieved in quantum optics, solid state physics or nuclear magnetic resonance. This book presents the lecture notes of the Les Houches Summer School on ‘Quantum entanglement and information processing’. Following the long tradition of the les Houches schools, it provides a comprehensive and pedagogical approach of the whole field, written by renowned specialists. One major goal of this book is to establish connections between the communities of quantum optics and of quantum electronic devices working in the area of quantum computing. When two communities share the same goals, the universality of physics unavoidably leads to similar developments. However, the communication barrier is often high, and few physicists are able to overcome it. This school has contributed to bridge the existing gap between communities, for the benefit of the future actors in the field of quantum computing. The book thus combines introductory chapters, providing the reader with a sufficiently wide theoretical framework in quantum information, quantum optics and quantum circuits physics, with more specialized presentations of recent theoretical and experimental advances in the field. This structure makes the book accessible to any graduate student having a good knowledge of basic quantum mechanics, and extremely useful to researchers. · Covers quantum optics, solid state physics and NMR implementations · Pedagogical approach combining introductory lectures and advanced chapters · Written by leading experts in the field · Accessible to all graduate students with a basic knowledge of quantum mechanics

Quantum Teleportation and Entanglement

Quantum Teleportation and Entanglement
Author : Akira Furusawa,Peter van Loock
Publisher : John Wiley & Sons
Release Date : 2011-05-03
Category : Science
Total pages :352
GET BOOK

Unique in that it is jointly written by an experimentalist and a theorist, this monograph presents universal quantum computation based on quantum teleportation as an elementary subroutine and multi-party entanglement as a universal resource. Optical approaches to measurement-based quantum computation are also described, including schemes for quantum error correction, with most of the experiments carried out by the authors themselves. Ranging from the theoretical background to the details of the experimental realization, the book describes results and advances in the field, backed by numerous illustrations of the authors' experimental setups. Aimed at researchers, physicists, and graduate and PhD students in physics, theoretical quantum optics, quantum mechanics, and quantum information.

Quantum Information, 2 Volume Set

Quantum Information, 2 Volume Set
Author : Dagmar Bruss,Gerd Leuchs
Publisher : Wiley-VCH
Release Date : 2019-04-01
Category : Science
Total pages :952
GET BOOK

This comprehensive textbook on the rapidly advancing field introduces readers to the fundamental concepts of information theory and quantum entanglement, taking into account the current state of research and development. It thus covers all current concepts in quantum computing, both theoretical and experimental, before moving on to the latest implementations of quantum computing and communication protocols. It contains problems and exercises and is therefore ideally suited for students and lecturers in physics and informatics, as well as experimental and theoretical physicists in academia and industry who work in the field of quantum information processing. The second edition incorporates important recent developments such as quantum metrology, quantum correlations beyond entanglement, and advances in quantum computing with solid state devices.