April 13, 2021

Download Ebook Free Signal Processing For Neuroscientists

Signal Processing for Neuroscientists

Signal Processing for Neuroscientists
Author : Wim van Drongelen
Publisher : Elsevier
Release Date : 2006-12-18
Category : Science
Total pages :320
GET BOOK

Signal Processing for Neuroscientists introduces analysis techniques primarily aimed at neuroscientists and biomedical engineering students with a reasonable but modest background in mathematics, physics, and computer programming. The focus of this text is on what can be considered the ‘golden trio’ in the signal processing field: averaging, Fourier analysis, and filtering. Techniques such as convolution, correlation, coherence, and wavelet analysis are considered in the context of time and frequency domain analysis. The whole spectrum of signal analysis is covered, ranging from data acquisition to data processing; and from the mathematical background of the analysis to the practical application of processing algorithms. Overall, the approach to the mathematics is informal with a focus on basic understanding of the methods and their interrelationships rather than detailed proofs or derivations. One of the principle goals is to provide the reader with the background required to understand the principles of commercially available analyses software, and to allow him/her to construct his/her own analysis tools in an environment such as MATLAB®. Multiple color illustrations are integrated in the text Includes an introduction to biomedical signals, noise characteristics, and recording techniques Basics and background for more advanced topics can be found in extensive notes and appendices A Companion Website hosts the MATLAB scripts and several data files: http://www.elsevierdirect.com/companion.jsp?ISBN=9780123708670

Signal Processing for Neuroscientists

Signal Processing for Neuroscientists
Author : Wim van Drongelen
Publisher : Academic Press
Release Date : 2018-04-20
Category : Science
Total pages :740
GET BOOK

Signal Processing for Neuroscientists, Second Edition provides an introduction to signal processing and modeling for those with a modest understanding of algebra, trigonometry and calculus. With a robust modeling component, this book describes modeling from the fundamental level of differential equations all the way up to practical applications in neuronal modeling. It features nine new chapters and an exercise section developed by the author. Since the modeling of systems and signal analysis are closely related, integrated presentation of these topics using identical or similar mathematics presents a didactic advantage and a significant resource for neuroscientists with quantitative interest. Although each of the topics introduced could fill several volumes, this book provides a fundamental and uncluttered background for the non-specialist scientist or engineer to not only get applications started, but also evaluate more advanced literature on signal processing and modeling. Includes an introduction to biomedical signals, noise characteristics, recording techniques, and the more advanced topics of linear, nonlinear and multi-channel systems analysis Features new chapters on the fundamentals of modeling, application to neuronal modeling, Kalman filter, multi-taper power spectrum estimation, and practice exercises Contains the basics and background for more advanced topics in extensive notes and appendices Includes practical examples of algorithm development and implementation in MATLAB Features a companion website with MATLAB scripts, data files, figures and video lectures

Signal Processing for Neuroscientists, A Companion Volume

Signal Processing for Neuroscientists, A Companion Volume
Author : Wim van Drongelen
Publisher : Elsevier
Release Date : 2010-08-26
Category : Medical
Total pages :186
GET BOOK

The popularity of signal processing in neuroscience is increasing, and with the current availability and development of computer hardware and software, it is anticipated that the current growth will continue. Because electrode fabrication has improved and measurement equipment is getting less expensive, electrophysiological measurements with large numbers of channels are now very common. In addition, neuroscience has entered the age of light, and fluorescence measurements are fully integrated into the researcher’s toolkit. Because each image in a movie contains multiple pixels, these measurements are multi-channel by nature. Furthermore, the availability of both generic and specialized software packages for data analysis has altered the neuroscientist’s attitude toward some of the more complex analysis techniques. This book is a companion to the previously published Signal Processing for Neuroscientists: An Introduction to the Analysis of Physiological Signals, which introduced readers to the basic concepts. It discusses several advanced techniques, rediscovers methods to describe nonlinear systems, and examines the analysis of multi-channel recordings. Covers the more advanced topics of linear and nonlinear systems analysis and multi-channel analysis Includes practical examples implemented in MATLAB Provides multiple references to the basics to help the student

Statistical Signal Processing for Neuroscience and Neurotechnology

Statistical Signal Processing for Neuroscience and Neurotechnology
Author : Karim G. Oweiss
Publisher : Academic Press
Release Date : 2010-09-22
Category : Science
Total pages :433
GET BOOK

This is a uniquely comprehensive reference that summarizes the state of the art of signal processing theory and techniques for solving emerging problems in neuroscience, and which clearly presents new theory, algorithms, software and hardware tools that are specifically tailored to the nature of the neurobiological environment. It gives a broad overview of the basic principles, theories and methods in statistical signal processing for basic and applied neuroscience problems. Written by experts in the field, the book is an ideal reference for researchers working in the field of neural engineering, neural interface, computational neuroscience, neuroinformatics, neuropsychology and neural physiology. By giving a broad overview of the basic principles, theories and methods, it is also an ideal introduction to statistical signal processing in neuroscience. A comprehensive overview of the specific problems in neuroscience that require application of existing and development of new theory, techniques, and technology by the signal processing community Contains state-of-the-art signal processing, information theory, and machine learning algorithms and techniques for neuroscience research Presents quantitative and information-driven science that has been, or can be, applied to basic and translational neuroscience problems

Signal Processing in Auditory Neuroscience

Signal Processing in Auditory Neuroscience
Author : Yoichi Ando
Publisher : Academic Press
Release Date : 2018-05-22
Category : Medical
Total pages :120
GET BOOK

Signal Processing in Auditory Neuroscience: Temporal and Spatial Features of Sound and Speech discusses how the physical attributes of different sounds manifest in neural signals and how to tease-apart their different influences. It includes EEG/MEG as additional variables to be considered when studying neural mechanisms of auditory processing in general, specifically in speech. Focuses on signal processing in human auditory-neuroscience Contains information that will be useful to researchers using a MEG/EEG recording of brain activity to study neural mechanisms of auditory processing and speech Gives an important overview and methodological background for techniques that are useful in human auditory-neuroscience

EEG Signal Processing and Feature Extraction

EEG Signal Processing and Feature Extraction
Author : Li Hu,Zhiguo Zhang
Publisher : Springer Nature
Release Date : 2019-10-12
Category : Medical
Total pages :437
GET BOOK

This book presents the conceptual and mathematical basis and the implementation of both electroencephalogram (EEG) and EEG signal processing in a comprehensive, simple, and easy-to-understand manner. EEG records the electrical activity generated by the firing of neurons within human brain at the scalp. They are widely used in clinical neuroscience, psychology, and neural engineering, and a series of EEG signal-processing techniques have been developed. Intended for cognitive neuroscientists, psychologists and other interested readers, the book discusses a range of current mainstream EEG signal-processing and feature-extraction techniques in depth, and includes chapters on the principles and implementation strategies.

Analyzing Neural Time Series Data

Analyzing Neural Time Series Data
Author : Mike X Cohen
Publisher : MIT Press
Release Date : 2014-01-17
Category : Medical
Total pages :600
GET BOOK

A comprehensive guide to the conceptual, mathematical, and implementational aspects of analyzing electrical brain signals, including data from MEG, EEG, and LFP recordings.

Signal Processing in Neuroscience

Signal Processing in Neuroscience
Author : Xiaoli Li
Publisher : Springer
Release Date : 2016-08-31
Category : Medical
Total pages :288
GET BOOK

This book reviews cutting-edge developments in neural signalling processing (NSP), systematically introducing readers to various models and methods in the context of NSP. Neuronal Signal Processing is a comparatively new field in computer sciences and neuroscience, and is rapidly establishing itself as an important tool, one that offers an ideal opportunity to forge stronger links between experimentalists and computer scientists. This new signal-processing tool can be used in conjunction with existing computational tools to analyse neural activity, which is monitored through different sensors such as spike trains, local filed potentials and EEG. The analysis of neural activity can yield vital insights into the function of the brain. This book highlights the contribution of signal processing in the area of computational neuroscience by providing a forum for researchers in this field to share their experiences to date.

Dynamic Neuroscience

Dynamic Neuroscience
Author : Zhe Chen,Sridevi V. Sarma
Publisher : Springer
Release Date : 2017-12-27
Category : Technology & Engineering
Total pages :327
GET BOOK

This book shows how to develop efficient quantitative methods to characterize neural data and extra information that reveals underlying dynamics and neurophysiological mechanisms. Written by active experts in the field, it contains an exchange of innovative ideas among researchers at both computational and experimental ends, as well as those at the interface. Authors discuss research challenges and new directions in emerging areas with two goals in mind: to collect recent advances in statistics, signal processing, modeling, and control methods in neuroscience; and to welcome and foster innovative or cross-disciplinary ideas along this line of research and discuss important research issues in neural data analysis. Making use of both tutorial and review materials, this book is written for neural, electrical, and biomedical engineers; computational neuroscientists; statisticians; computer scientists; and clinical engineers.

MATLAB for Neuroscientists

MATLAB for Neuroscientists
Author : Pascal Wallisch,Michael E. Lusignan,Marc D. Benayoun,Tanya I. Baker,Adam Seth Dickey,Nicholas G. Hatsopoulos
Publisher : Academic Press
Release Date : 2014-01-09
Category : Computers
Total pages :570
GET BOOK

MATLAB for Neuroscientists serves as the only complete study manual and teaching resource for MATLAB, the globally accepted standard for scientific computing, in the neurosciences and psychology. This unique introduction can be used to learn the entire empirical and experimental process (including stimulus generation, experimental control, data collection, data analysis, modeling, and more), and the 2nd Edition continues to ensure that a wide variety of computational problems can be addressed in a single programming environment. This updated edition features additional material on the creation of visual stimuli, advanced psychophysics, analysis of LFP data, choice probabilities, synchrony, and advanced spectral analysis. Users at a variety of levels—advanced undergraduates, beginning graduate students, and researchers looking to modernize their skills—will learn to design and implement their own analytical tools, and gain the fluency required to meet the computational needs of neuroscience practitioners. The first complete volume on MATLAB focusing on neuroscience and psychology applications Problem-based approach with many examples from neuroscience and cognitive psychology using real data Illustrated in full color throughout Careful tutorial approach, by authors who are award-winning educators with strong teaching experience

EEG/ERP Analysis

EEG/ERP Analysis
Author : Kamel Nidal,Aamir Saeed Malik
Publisher : CRC Press
Release Date : 2014-10-23
Category : Medical
Total pages :334
GET BOOK

Changes in the neurological functions of the human brain are often a precursor to numerous degenerative diseases. Advanced EEG systems and other monitoring systems used in preventive diagnostic procedures incorporate innovative features for brain monitoring functions such as real-time automated signal processing techniques and sophisticated amplifiers. Highlighting the US, Europe, Australia, New Zealand, Japan, Korea, China, and many other areas, EEG/ERP Analysis: Methods and Applications examines how researchers from various disciplines have started to work in the field of brain science, and explains the different techniques used for processing EEG/ERP data. Engineers can learn more about the clinical applications, while clinicians and biomedical scientists can familiarize themselves with the technical aspects and theoretical approaches. This book explores the recent advances involved in EEG/ERP analysis for brain monitoring, details successful EEG and ERP applications, and presents the neurological aspects in a simplified way so that those with an engineering background can better design clinical instruments. It consists of 13 chapters and includes the advanced techniques used for signal enhancement, source localization, data fusion, classification, and quantitative EEG. In addition, some of the chapters are contributed by neurologists and neurosurgeons providing the clinical aspects of EEG/ERP analysis. Covers a wide range of EEG/ERP applications with state-of-the-art techniques for denoising, analysis, and classification Examines new applications related to 3D display devices Includes MATLAB® codes EEG/ERP Analysis: Methods and Applications is a resource for biomedical and neuroscience scientists who are working on neural signal processing and interpretation, and biomedical engineers who are working on EEG/ERP signal analysis methods and developing clinical instrumentation. It can also assist neurosurgeons, psychiatrists, and postgraduate students doing research in neural engineering, as well as electronic engineers in neural signal processing and instrumentation.

Biomedical Signal Processing and Artificial Intelligence in Healthcare

Biomedical Signal Processing and Artificial Intelligence in Healthcare
Author : Walid A. Zgallai
Publisher : Academic Press
Release Date : 2020-07-29
Category : Technology & Engineering
Total pages :268
GET BOOK

Biomedical Signal Processing and Artificial Intelligence in Healthcare is a new volume in the Developments in Biomedical Engineering and Bioelectronics series. This volume covers the basics of biomedical signal processing and artificial intelligence. It explains the role of machine learning in relation to processing biomedical signals and the applications in medicine and healthcare. The book provides background to statistical analysis in biomedical systems. Several types of biomedical signals are introduced and analyzed, including ECG and EEG signals. The role of Deep Learning, Neural Networks, and the implications of the expansion of artificial intelligence is covered. Biomedical Images are also introduced and processed, including segmentation, classification, and detection. This book covers different aspects of signals, from the use of hardware and software, and making use of artificial intelligence in problem solving. Dr Zgallai’s book has up to date coverage where readers can find the latest information, easily explained, with clear examples and illustrations. The book includes examples on the application of signal and image processing employing artificial intelligence to Alzheimer, Parkinson, ADHD, autism, and sleep disorders, as well as ECG and EEG signals. Developments in Biomedical Engineering and Bioelectronics is a 10-volume series which covers recent developments, trends and advances in this field. Edited by leading academics in the field, and taking a multidisciplinary approach, this series is a forum for cutting-edge, contemporary review articles and contributions from key ‘up-and-coming’ academics across the full subject area. The series serves a wide audience of university faculty, researchers and students, as well as industry practitioners. Coverage of the subject area and the latest advances and applications in biomedical signal processing and Artificial Intelligence. Contributions by recognized researchers and field leaders. On-line presentations, tutorials, application and algorithm examples.

MATLAB for Brain and Cognitive Scientists

MATLAB for Brain and Cognitive Scientists
Author : Mike X Cohen
Publisher : MIT Press
Release Date : 2017-05-12
Category : Psychology
Total pages :576
GET BOOK

An introduction to a popular programming language for neuroscience research, taking the reader from beginning to intermediate and advanced levels of MATLAB programming.

Practical Guide for Biomedical Signals Analysis Using Machine Learning Techniques

Practical Guide for Biomedical Signals Analysis Using Machine Learning Techniques
Author : Abdulhamit Subasi
Publisher : Academic Press
Release Date : 2019-03-16
Category : Business & Economics
Total pages :456
GET BOOK

Practical Guide for Biomedical Signals Analysis Using Machine Learning Techniques: A MATLAB Based Approach presents how machine learning and biomedical signal processing methods can be used in biomedical signal analysis. Different machine learning applications in biomedical signal analysis, including those for electrocardiogram, electroencephalogram and electromyogram are described in a practical and comprehensive way, helping readers with limited knowledge. Sections cover biomedical signals and machine learning techniques, biomedical signals, such as electroencephalogram (EEG), electromyogram (EMG) and electrocardiogram (ECG), different signal-processing techniques, signal de-noising, feature extraction and dimension reduction techniques, such as PCA, ICA, KPCA, MSPCA, entropy measures, and other statistical measures, and more. This book is a valuable source for bioinformaticians, medical doctors and other members of the biomedical field who need a cogent resource on the most recent and promising machine learning techniques for biomedical signals analysis. Provides comprehensive knowledge in the application of machine learning tools in biomedical signal analysis for medical diagnostics, brain computer interface and man/machine interaction Explains how to apply machine learning techniques to EEG, ECG and EMG signals Gives basic knowledge on predictive modeling in biomedical time series and advanced knowledge in machine learning for biomedical time series

Brain-Computer Interfacing for Assistive Robotics

Brain-Computer Interfacing for Assistive Robotics
Author : Vaibhav Gandhi
Publisher : Academic Press
Release Date : 2014-09-24
Category : Medical
Total pages :258
GET BOOK

Brain-computer interface (BCI) technology provides a means of communication that allows individuals with severely impaired movement to communicate with assistive devices using the electroencephalogram (EEG) or other brain signals. The practicality of a BCI has been possible due to advances in multi-disciplinary areas of research related to cognitive neuroscience, brain-imaging techniques and human-computer interfaces. However, two major challenges remain in making BCI for assistive robotics practical for day-to-day use: the inherent lower bandwidth of BCI, and how to best handle the unknown embedded noise within the raw EEG. Brain-Computer Interfacing for Assistive Robotics is a result of research focusing on these important aspects of BCI for real-time assistive robotic application. It details the fundamental issues related to non-stationary EEG signal processing (filtering) and the need of an alternative approach for the same. Additionally, the book also discusses techniques for overcoming lower bandwidth of BCIs by designing novel use-centric graphical user interfaces. A detailed investigation into both these approaches is discussed. An innovative reference on the brain-computer interface (BCI) and its utility in computational neuroscience and assistive robotics Written for mature and early stage researchers, postgraduate and doctoral students, and computational neuroscientists, this book is a novel guide to the fundamentals of quantum mechanics for BCI Full-colour text that focuses on brain-computer interfacing for real-time assistive robotic application and details the fundamental issues related with signal processing and the need for alternative approaches A detailed introduction as well as an in-depth analysis of challenges and issues in developing practical brain-computer interfaces.