June 17, 2021

Download Ebook Free Source Separation And Machine Learning

Source Separation and Machine Learning

Source Separation and Machine Learning
Author : Jen-Tzung Chien
Publisher : Academic Press
Release Date : 2018-11-01
Category : Technology & Engineering
Total pages :384
GET BOOK

Source Separation and Machine Learning presents the fundamentals in adaptive learning algorithms for Blind Source Separation (BSS) and emphasizes the importance of machine learning perspectives. It illustrates how BSS problems are tackled through adaptive learning algorithms and model-based approaches using the latest information on mixture signals to build a BSS model that is seen as a statistical model for a whole system. Looking at different models, including independent component analysis (ICA), nonnegative matrix factorization (NMF), nonnegative tensor factorization (NTF), and deep neural network (DNN), the book addresses how they have evolved to deal with multichannel and single-channel source separation. Emphasizes the modern model-based Blind Source Separation (BSS) which closely connects the latest research topics of BSS and Machine Learning Includes coverage of Bayesian learning, sparse learning, online learning, discriminative learning and deep learning Presents a number of case studies of model-based BSS (categorizing them into four modern models - ICA, NMF, NTF and DNN), using a variety of learning algorithms that provide solutions for the construction of BSS systems

Audio Source Separation and Speech Enhancement

Audio Source Separation and Speech Enhancement
Author : Emmanuel Vincent,Tuomas Virtanen,Sharon Gannot
Publisher : John Wiley & Sons
Release Date : 2018-10-22
Category : Technology & Engineering
Total pages :504
GET BOOK

Learn the technology behind hearing aids, Siri, and Echo Audio source separation and speech enhancement aim to extract one or more source signals of interest from an audio recording involving several sound sources. These technologies are among the most studied in audio signal processing today and bear a critical role in the success of hearing aids, hands-free phones, voice command and other noise-robust audio analysis systems, and music post-production software. Research on this topic has followed three convergent paths, starting with sensor array processing, computational auditory scene analysis, and machine learning based approaches such as independent component analysis, respectively. This book is the first one to provide a comprehensive overview by presenting the common foundations and the differences between these techniques in a unified setting. Key features: Consolidated perspective on audio source separation and speech enhancement. Both historical perspective and latest advances in the field, e.g. deep neural networks. Diverse disciplines: array processing, machine learning, and statistical signal processing. Covers the most important techniques for both single-channel and multichannel processing. This book provides both introductory and advanced material suitable for people with basic knowledge of signal processing and machine learning. Thanks to its comprehensiveness, it will help students select a promising research track, researchers leverage the acquired cross-domain knowledge to design improved techniques, and engineers and developers choose the right technology for their target application scenario. It will also be useful for practitioners from other fields (e.g., acoustics, multimedia, phonetics, and musicology) willing to exploit audio source separation or speech enhancement as pre-processing tools for their own needs.

Machine Learning Algorithms for Independent Vector Analysis and Blind Source Separation

Machine Learning Algorithms for Independent Vector Analysis and Blind Source Separation
Author : In Tae Lee
Publisher : Unknown
Release Date : 2009
Category :
Total pages :65
GET BOOK

Blind signal separation (BSS) aims at recovering unknown source signals from the observed sensor signals where the mixing process is also unknown. As a popular method to solve this problem, independent component analysis (ICA) maximizes the mutual independence among, or equivalently the non-Gaussianity of, the signals and has been very successful especially when the unknown mixing process is instantaneous. In most realistic situations, however, there are time delay and reverberations which involve long filter lengths in the time domain. Such convolutive BSS problems are often tackled in the frequency domain, or short-time Fourier transform (STFT) domain, mainly because the convolutive mixture model can be approximated to bin-wise instantaneous mixtures given the frame size is long enough to cover the main part of the convolved impulse responses. While the bin-wise instantaneous mixtures can be separated by the ICA algorithms for complex-valued variables, there are several factors that have significant influence on the final separation performance, which are the permutation problem, incomplete bin-wise separation, and noise. Permutation problem refers to the random alignment of the STFT components that are separated by ICA. It is due to the permutation indeterminacy of ICA and it hinders proper reconstruction of the original time-domain signals. To solve this problem, a multidimensional ICA framework that is called independent vector analysis (IVA) has been proposed. IVA exploits the mutual dependence among the STFT components originating from the same source and employs a multivariate dependence model. In this thesis, various dependence models and methods are proposed in the framework of IVA to solve the convolutive BSS problem, which include Lp-norm invariant joint densities, density functions represented by overlapped cliques in graphical models, Newton's update optimization, and an EM algorithm using a mixture of multivariate Gaussians prior where Gaussian noise is added in the model. While IVA is an effective framework to solve the convolutive BSS, the high dimensionality in the STFT domain makes it difficult to model the joint probability density function (PDF) of the fullband STFT components. On the other hand, bin-wise separation is a simpler task for which a permutation correction algorithm has to follow. For permutation correction, overall measures of magnitude correlation have been popular. However, the positive correlation is stronger between STFT components that are close to each other and correlation is a measure computed pair-wise. Thus, in this thesis, subband likelihood functions are proposed for the permutation correction which is fast to obtain and robust in solving the permutation problem.

Handbook of Blind Source Separation

Handbook of Blind Source Separation
Author : Pierre Comon,Christian Jutten
Publisher : Academic Press
Release Date : 2010-02-17
Category : Technology & Engineering
Total pages :856
GET BOOK

Edited by the people who were forerunners in creating the field, together with contributions from 34 leading international experts, this handbook provides the definitive reference on Blind Source Separation, giving a broad and comprehensive description of all the core principles and methods, numerical algorithms and major applications in the fields of telecommunications, biomedical engineering and audio, acoustic and speech processing. Going beyond a machine learning perspective, the book reflects recent results in signal processing and numerical analysis, and includes topics such as optimization criteria, mathematical tools, the design of numerical algorithms, convolutive mixtures, and time frequency approaches. This Handbook is an ideal reference for university researchers, R&D engineers and graduates wishing to learn the core principles, methods, algorithms, and applications of Blind Source Separation. Covers the principles and major techniques and methods in one book Edited by the pioneers in the field with contributions from 34 of the world’s experts Describes the main existing numerical algorithms and gives practical advice on their design Covers the latest cutting edge topics: second order methods; algebraic identification of under-determined mixtures, time-frequency methods, Bayesian approaches, blind identification under non negativity approaches, semi-blind methods for communications Shows the applications of the methods to key application areas such as telecommunications, biomedical engineering, speech, acoustic, audio and music processing, while also giving a general method for developing applications

Information Retrieval from Marine Soundscape by Using Machine Learning-based Source Separation

Information Retrieval from Marine Soundscape by Using Machine Learning-based Source Separation
Author : Tzu-Hao Lin,Tomonari Akamatsu,Yu Tsao,Katsunori Fujikura
Publisher : Unknown
Release Date : 2018
Category :
Total pages :129
GET BOOK

Unsupervised Signal Processing

Unsupervised Signal Processing
Author : João Marcos Travassos Romano,Romis Attux,Charles Casimiro Cavalcante,Ricardo Suyama
Publisher : CRC Press
Release Date : 2018-09-03
Category : Computers
Total pages :340
GET BOOK

Unsupervised Signal Processing: Channel Equalization and Source Separation provides a unified, systematic, and synthetic presentation of the theory of unsupervised signal processing. Always maintaining the focus on a signal processing-oriented approach, this book describes how the subject has evolved and assumed a wider scope that covers several topics, from well-established blind equalization and source separation methods to novel approaches based on machine learning and bio-inspired algorithms. From the foundations of statistical and adaptive signal processing, the authors explore and elaborate on emerging tools, such as machine learning-based solutions and bio-inspired methods. With a fresh take on this exciting area of study, this book: Provides a solid background on the statistical characterization of signals and systems and on linear filtering theory Emphasizes the link between supervised and unsupervised processing from the perspective of linear prediction and constrained filtering theory Addresses key issues concerning equilibrium solutions and equivalence relationships in the context of unsupervised equalization criteria Provides a systematic presentation of source separation and independent component analysis Discusses some instigating connections between the filtering problem and computational intelligence approaches. Building on more than a decade of the authors’ work at DSPCom laboratory, this book applies a fresh conceptual treatment and mathematical formalism to important existing topics. The result is perhaps the first unified presentation of unsupervised signal processing techniques—one that addresses areas including digital filters, adaptive methods, and statistical signal processing. With its remarkable synthesis of the field, this book provides a new vision to stimulate progress and contribute to the advent of more useful, efficient, and friendly intelligent systems.

Nonlinear Blind Source Separation and Blind Mixture Identification

Nonlinear Blind Source Separation and Blind Mixture Identification
Author : Yannick Deville,Leonardo Tomazeli Duarte,Shahram Hosseini
Publisher : Springer
Release Date : 2021-02-03
Category : Technology & Engineering
Total pages :71
GET BOOK

This book provides a detailed survey of the methods that were recently developed to handle advanced versions of the blind source separation problem, which involve several types of nonlinear mixtures. Another attractive feature of the book is that it is based on a coherent framework. More precisely, the authors first present a general procedure for developing blind source separation methods. Then, all reported methods are defined with respect to this procedure. This allows the reader not only to more easily follow the description of each method but also to see how these methods relate to one another. The coherence of this book also results from the fact that the same notations are used throughout the chapters for the quantities (source signals and so on) that are used in various methods. Finally, among the quite varied types of processing methods that are presented in this book, a significant part of this description is dedicated to methods based on artificial neural networks, especially recurrent ones, which are currently of high interest to the data analysis and machine learning community in general, beyond the more specific signal processing and blind source separation communities.

Nonlinear Blind Source Separation and Blind Mixture Identification

Nonlinear Blind Source Separation and Blind Mixture Identification
Author : Yannick Deville
Publisher : Springer Nature
Release Date : 2021
Category :
Total pages :129
GET BOOK

Independent Component Analysis and Signal Separation

Independent Component Analysis and Signal Separation
Author : Tulay Adali,Christian Jutten,Joao Marcos Travassos Romano,Allan Kardec Barros
Publisher : Springer Science & Business Media
Release Date : 2009-02-25
Category : Computers
Total pages :785
GET BOOK

This volume contains the papers presented at the 8th International Conf- ence on Independent Component Analysis (ICA) and Source Separation held in Paraty, Brazil, March 15–18, 2009. This year's event resulted from scienti?c collaborations between a team of researchers from ?ve di?erent Brazilian u- versities and received the support of the Brazilian Telecommunications Society (SBrT) as well as the ?nancial sponsorship of CNPq, CAPES and FAPERJ. Independent component analysis and signal separation is one of the most - citing current areas of research in statistical signal processing and unsupervised machine learning. The area has received attention from severalresearchcom- nities including machine learning, neural networks, statistical signal processing and Bayesian modeling. Independent component analysis and signal separation has applications at the intersection of many science and engineering disciplines concerned with understanding and extracting useful information from data as diverse as neuronal activity and brain images, bioinformatics, communications, the World Wide Web, audio, video, sensor signals, and time series.

Machine Learning: ECML 2007

Machine Learning: ECML 2007
Author : Joost N. Kok,Jacek Koronacki,Ramon Lopez de Mantaras,Stan Matwin,Dunja Mladenic
Publisher : Springer
Release Date : 2007-09-08
Category : Computers
Total pages :812
GET BOOK

This book constitutes the refereed proceedings of the 18th European Conference on Machine Learning, ECML 2007, held in Warsaw, Poland, September 2007, jointly with PKDD 2007. The 41 revised full papers and 37 revised short papers presented together with abstracts of four invited talks were carefully reviewed and selected from 592 abstracts submitted to both, ECML and PKDD. The papers present a wealth of new results in the area and address all current issues in machine learning.

Advances in Neural Networks - ISNN 2004

Advances in Neural Networks - ISNN 2004
Author : Fuliang Yin,Jun Wang
Publisher : Springer Science & Business Media
Release Date : 2004-08-11
Category : Computers
Total pages :1044
GET BOOK

The two volume set LNCS 3173/3174 constitutes the refereed proceedings of the International Symposium on Neural Networks, ISNN 2004, held in Dalian, China in August 2004. The 329 papers presented were carefully reviewed and selected from more than 800 submissions. The papers span the entire scope of neural computing and its applications; they are organized in 11 major topical parts on theoretical analysis; learning and optimization; support vector machines; blind source separation, independent component analysis, and principal component analysis; clustering and classification; robotics and control; telecommunications; signal image, and time series analysis; biomedical applications; detection, diagnosis, and computer security; and other applications.

Blind Identification and Separation of Complex-valued Signals

Blind Identification and Separation of Complex-valued Signals
Author : Eric Moreau,Tülay Adali
Publisher : John Wiley & Sons
Release Date : 2013-10-07
Category : Technology & Engineering
Total pages :112
GET BOOK

Blind identification consists of estimating a multi-dimensional system only through the use of its output, and source separation, the blind estimation of the inverse of the system. Estimation is generally carried out using different statistics of the output. The authors of this book consider the blind identification and source separation problem in the complex-domain, where the available statistical properties are richer and include non-circularity of the sources – underlying components. They define identifiability conditions and present state-of-the-art algorithms that are based on algebraic methods as well as iterative algorithms based on maximum likelihood theory. Contents 1. Mathematical Preliminaries. 2. Estimation by Joint Diagonalization. 3. Maximum Likelihood ICA. About the Authors Eric Moreau is Professor of Electrical Engineering at the University of Toulon, France. His research interests concern statistical signal processing, high order statistics and matrix/tensor decompositions with applications to data analysis, telecommunications and radar. Tülay Adali is Professor of Electrical Engineering and Director of the Machine Learning for Signal Processing Laboratory at the University of Maryland, Baltimore County, USA. Her research interests concern statistical and adaptive signal processing, with an emphasis on nonlinear and complex-valued signal processing, and applications in biomedical data analysis and communications. Blind identification consists of estimating a multidimensional system through the use of only its output. Source separation is concerned with the blind estimation of the inverse of the system. The estimation is generally performed by using different statistics of the outputs. The authors consider the blind estimation of a multiple input/multiple output (MIMO) system that mixes a number of underlying signals of interest called sources. They also consider the case of direct estimation of the inverse system for the purpose of source separation. They then describe the estimation theory associated with the identifiability conditions and dedicated algebraic algorithms. The algorithms depend critically on (statistical and/or time frequency) properties of complex sources that will be precisely described.

Unsupervised Signal Processing

Unsupervised Signal Processing
Author : Anonim
Publisher : Unknown
Release Date : 2011
Category : Equalizers (Electronics)
Total pages :311
GET BOOK

Unsupervised Signal Processing

Unsupervised Signal Processing
Author : Anonim
Publisher : Unknown
Release Date : 2011
Category : Equalizers (Electronics)
Total pages :311
GET BOOK

Computational Analysis of Sound Scenes and Events

Computational Analysis of Sound Scenes and Events
Author : Tuomas Virtanen,Mark D. Plumbley,Dan Ellis
Publisher : Springer
Release Date : 2017-09-21
Category : Technology & Engineering
Total pages :422
GET BOOK

This book presents computational methods for extracting the useful information from audio signals, collecting the state of the art in the field of sound event and scene analysis. The authors cover the entire procedure for developing such methods, ranging from data acquisition and labeling, through the design of taxonomies used in the systems, to signal processing methods for feature extraction and machine learning methods for sound recognition. The book also covers advanced techniques for dealing with environmental variation and multiple overlapping sound sources, and taking advantage of multiple microphones or other modalities. The book gives examples of usage scenarios in large media databases, acoustic monitoring, bioacoustics, and context-aware devices. Graphical illustrations of sound signals and their spectrographic representations are presented, as well as block diagrams and pseudocode of algorithms.