November 30, 2020

Download Ebook Free Ultracold Bosonic And Fermionic Gases

Ultracold Bosonic and Fermionic Gases

Ultracold Bosonic and Fermionic Gases
Author : Kathy Levin,Alexander Fetter,Dan Stamper-Kurn
Publisher : Elsevier
Release Date : 2012-11-15
Category : Science
Total pages :260
GET BOOK

The rapidly developing topic of ultracold atoms has many actual and potential applications for condensed-matter science, and the contributions to this book emphasize these connections. Ultracold Bose and Fermi quantum gases are introduced at a level appropriate for first-year graduate students and non-specialists such as more mature general physicists. The reader will find answers to questions like: how are experiments conducted and how are the results interpreted? What are the advantages and limitations of ultracold atoms in studying many-body physics? How do experiments on ultracold atoms facilitate novel scientific opportunities relevant to the condensed-matted community? This volume seeks to be comprehensible rather than comprehensive; it aims at the level of a colloquium, accessible to outside readers, containing only minimal equations and limited references. In large part, it relies on many beautiful experiments from the past fifteen years and their very fruitful interplay with basic theoretical ideas. In this particular context, phenomena most relevant to condensed-matter science have been emphasized. Introduces ultracold Bose and Fermi quantum gases at a level appropriate for non-specialists Discusses landmark experiments and their fruitful interplay with basic theoretical ideas Comprehensible rather than comprehensive, containing only minimal equations

Ultra-cold Fermi Gases

Ultra-cold Fermi Gases
Author : M. Inguscio,W. Ketterle,C. Salomon
Publisher : IOS Press
Release Date : 2008-04-18
Category : Science
Total pages :932
GET BOOK

The field of cold atomic gases faced a revolution in 1995 when Bose-Einstein condensation was achieved. Since then, there has been an impressive progress, both experimental and theoretical. The quest for ultra-cold Fermi gases started shortly after the 1995 discovery, and quantum degeneracy in a gas of fermionic atoms was obtained in 1999. The Pauli exclusion principle plays a crucial role in many aspects of ultra-cold Fermi gases, including inhibited interactions with applications to precision measurements, and strong correlations. The path towards strong interactions and pairing of fermions opened up with the discovery in 2003 that molecules formed by fermions near a Feshbach resonance were surprisingly stable against inelastic decay, but featured strong elastic interactions. This remarkable combination was explained by the Pauli exclusion principle and the fact that only inelastic collisions require three fermions to come close to each other. The unexpected stability of strongly interacting fermions and fermion pairs triggered most of the research which was presented at this summer school. It is remarkable foresight (or good luck) that the first steps to organize this summer school were already taken before this discovery. It speaks for the dynamics of the field how dramatically it can change course when new insight is obtained. The contributions in this volume provide a detailed coverage of the experimental techniques for the creation and study of Fermi quantum gases, as well as the theoretical foundation for understanding the properties of these novel systems.

Many-Body Physics with Ultracold Gases

Many-Body Physics with Ultracold Gases
Author : Christophe Salomon,Georgy V. Shlyapnikov,Leticia F. Cugliandolo
Publisher : Oxford University Press
Release Date : 2013
Category : Science
Total pages :345
GET BOOK

This book provides authoritative tutorials on the most recent achievements in the field of quantum gases at the interface between atomic physics and quantum optics, condensed matter physics, nuclear and high-energy physics, non-linear physics, and quantum information.

Ultracold Gases in Two Dimensions

Ultracold Gases in Two Dimensions
Author : L. K. Lim
Publisher : Unknown
Release Date : 2010
Category :
Total pages :129
GET BOOK

Proceedings of the XVIII International Conference

Proceedings of the XVIII International Conference
Author : Leo William Hollberg,James Charles Bergquist,Mark A. Kasevich
Publisher : World Scientific
Release Date : 2008
Category : Science
Total pages :319
GET BOOK

The eighteenth International Conference on Laser Spectroscopy was held on 24-29 June 2007 in Telluride, Colorado. In keeping with its rich tradition, ICOLS-07 was truly an international gathering with 173 delegates and 34 accompanying guests from 21 countries (Australia, Austria, Canada, China, Denmark, France, Germany, Ireland, Israel, Italy, Japan, Netherlands, New Zealand, Poland, Russia, South Africa, Sweden, Switzerland, Taiwan, United Kingdom, and the United States).This volume presents the invited talks comprising the technical program of the Conference, arranged in the general topic areas of degenerate quantum gases, quantum information and control, precision measurements, fundamental physics and applications, ultra-fast control and spectroscopy, novel spectroscopic applications, spectroscopy on the small scale, cold atoms and molecules, single atoms and quantum optics, and optical atomic clocks. The vibrant exchange of ideas provided the real strength and foundation of the Conference, especially in areas of the ever-expanding field of laser spectroscopy.

Functional Renormalization and Ultracold Quantum Gases

Functional Renormalization and Ultracold Quantum Gases
Author : Stefan Flörchinger
Publisher : Springer Science & Business Media
Release Date : 2010-09-14
Category : Science
Total pages :202
GET BOOK

Modern techniques from quantum field theory are applied in this work to the description of ultracold quantum gases. This leads to a unified description of many phenomena including superfluidity for bosons and fermions, classical and quantum phase transitions, different dimensions, thermodynamic properties and few-body phenomena as bound state formation or the Efimov effect. The non-perturbative treatment with renormalization group flow equations can account for all known limiting cases by solving one single equation. It improves previous results quantitatively and brings qualitatively new insights. As an example, new quantum phase transitions are found for fermions with three spin states. Ultracold atomic gases can be seen as an interesting model for features of high energy physics and for condensed matter theory. The research reported in this thesis helps to solve the difficult complexity problem in modern theoretical physics.

Ultracold Gases and Quantum Information

Ultracold Gases and Quantum Information
Author : Christian Miniatura,Leong-Chuan Kwek,Martial Ducloy,BenoÎt Grémaud,Berthold-Georg Englert,Leticia Cugliandolo,Artur Ekert,Kok Khoo Phua
Publisher : OUP Oxford
Release Date : 2011-05-05
Category : Science
Total pages :668
GET BOOK

In recent years, there has been much synergy between the exciting areas of quantum information science and ultracold atoms. This volume, as part of the proceedings for the XCI session of Les Houches School of Physics (held for the first time outside Europe in Singapore) brings together experts in both fields. The theme of the school focused on two principal topics: quantum information science and ultracold atomic physics. The topics range from Bose Einstein Condensates to Degenerate Fermi Gases to fundamental concepts in Quantum Information Sciences, including some special topics on Quantum Hall Effects, Quantum Phase Transition, Interactions in Quantum Fluids, Disorder and Interference Phenomenoma, Trapped Ions and Atoms, and Quantum Optical Devices.

From Atom Optics to Quantum Simulation

From Atom Optics to Quantum Simulation
Author : Sebastian Will
Publisher : Springer Science & Business Media
Release Date : 2012-12-15
Category : Science
Total pages :258
GET BOOK

This thesis explores ultracold quantum gases of bosonic and fermionic atoms in optical lattices. The highly controllable experimental setting discussed in this work, has opened the door to new insights into static and dynamical properties of ultracold quantum matter. One of the highlights reported here is the development and application of a novel time-resolved spectroscopy technique for quantum many-body systems. By following the dynamical evolution of a many-body system after a quantum quench, the author shows how the important energy scales of the underlying Hamiltonian can be measured with high precision. This achievement, its application, and many other exciting results make this thesis of interest to a broad audience ranging from quantum optics to condensed matter physics. A lucid style of writing accompanied by a series of excellent figures make the work accessible to readers outside the rapidly growing research field of ultracold atoms.

Probing Correlated Quantum Many-Body Systems at the Single-Particle Level

Probing Correlated Quantum Many-Body Systems at the Single-Particle Level
Author : Manuel Endres
Publisher : Springer Science & Business
Release Date : 2014-04-26
Category : Science
Total pages :165
GET BOOK

How much knowledge can we gain about a physical system and to what degree can we control it? In quantum optical systems, such as ion traps or neutral atoms in cavities, single particles and their correlations can now be probed in a way that is fundamentally limited only by the laws of quantum mechanics. In contrast, quantum many-body systems pose entirely new challenges due to the enormous number of microscopic parameters and their small length- and short time-scales. This thesis describes a new approach to probing quantum many-body systems at the level of individual particles: Using high-resolution, single-particle-resolved imaging and manipulation of strongly correlated atoms, single atoms can be detected and manipulated due to the large length and time-scales and the precise control of internal degrees of freedom. Such techniques lay stepping stones for the experimental exploration of new quantum many-body phenomena and applications thereof, such as quantum simulation and quantum information, through the design of systems at the microscopic scale and the measurement of previously inaccessible observables.

Quantum Gases

Quantum Gases
Author : Nick Proukakis
Publisher : World Scientific
Release Date : 2013
Category : Science
Total pages :554
GET BOOK

This volume provides a broad overview of the principal theoretical techniques applied to non-equilibrium and finite temperature quantum gases. Covering Bose-Einstein condensates, degenerate Fermi gases, and the more recently realised exciton-polariton condensates, it fills a gap by linking between different methods with origins in condensed matter physics, quantum field theory, quantum optics, atomic physics, and statistical mechanics.

Vortex Structures in Ultra-Cold Atomic Gases

Vortex Structures in Ultra-Cold Atomic Gases
Author : Nick Verhelst
Publisher : Unknown
Release Date : 2017
Category : Science
Total pages :129
GET BOOK

In this chapter a basic introduction to the theory of vortices in ultra-cold (superfluid) atomic gases is given. The main focus will be on bosonic atomic gases, since these contain the same basic physics, but with simpler formulas. Towards the end of the chapter, the difference between bosonic and fermionic atomic gases is discussed. This discussion will allow the reader to make the conceptual step from bosonic to fermionic gases, while pinpointing the main differences and difficulties when working with fermionic gases rather than bosonic gases. The goal of this chapter is to provide a good and general starting point for researchers, or other interested parties, who wish to start exploring the physics of ultra-cold gases.

Atoms, Molecules and Optical Physics 1

Atoms, Molecules and Optical Physics 1
Author : Ingolf V. Hertel,Claus-Peter Schulz
Publisher : Springer
Release Date : 2014-10-24
Category : Science
Total pages :689
GET BOOK

This is the first volume of textbooks on atomic, molecular and optical physics, aiming at a comprehensive presentation of this highly productive branch of modern physics as an indispensable basis for many areas in physics and chemistry as well as in state of the art bio- and material-sciences. It primarily addresses advanced students (including PhD students), but in a number of selected subject areas the reader is lead up to the frontiers of present research. Thus even the active scientist is addressed. This volume 1 provides the canonical knowledge in atomic physics together with basics of modern spectroscopy. Starting from the fundamentals of quantum physics, the reader is familiarized in well structured chapters step by step with the most important phenomena, models and measuring techniques. The emphasis is always on the experiment and its interpretation, while the necessary theory is introduced from this perspective in a compact and occasionally somewhat heuristic manner, easy to follow even for beginners.

Ultracold Quantum Fields

Ultracold Quantum Fields
Author : Henk T. C. Stoof,Dennis B. M. Dickerscheid,Koos Gubbels
Publisher : Springer Science & Business Media
Release Date : 2008-11-30
Category : Technology & Engineering
Total pages :485
GET BOOK

On June 19th 1999, the European Ministers of Education signed the Bologna Dec laration, with which they agreed that the European university education should be uniformized throughout Europe and based on the two cycle bachelor master’s sys tem. The Institute for Theoretical Physics at Utrecht University quickly responded to this new challenge and created an international master’s programme in Theoret ical Physics which started running in the summer of 2000. At present, the master’s programme is a so called prestige master at Utrecht University, and it aims at train ing motivated students to become sophisticated researchers in theoretical physics. The programme is built on the philosophy that modern theoretical physics is guided by universal principles that can be applied to any sub?eld of physics. As a result, the basis of the master’s programme consists of the obligatory courses Statistical Field Theory and Quantum Field Theory. These focus in particular on the general concepts of quantum ?eld theory, rather than on the wide variety of possible applica tions. These applications are left to optional courses that build upon the ?rm concep tual basis given in the obligatory courses. The subjects of these optional courses in clude, for instance, Strongly Correlated Electrons, Spintronics, Bose Einstein Con densation, The Standard Model, Cosmology, and String Theory.

Tunneling Dynamics in Open Ultracold Bosonic Systems

Tunneling Dynamics in Open Ultracold Bosonic Systems
Author : Axel U. J. Lode
Publisher : Springer
Release Date : 2014-07-22
Category : Science
Total pages :139
GET BOOK

This thesis addresses the intriguing topic of the quantum tunnelling of many-body systems such as Bose-Einstein condensates. Despite the enormous amount of work on the tunneling of a single particle through a barrier, we know very little about how a system made of several or of many particles tunnels through a barrier to open space. The present work uses numerically exact solutions of the time-dependent many-boson Schrödinger equation to explore the rich physics of the tunneling to open space process in ultracold bosonic particles that are initially prepared as a Bose-Einstein condensate and subsequently allowed to tunnel through a barrier to open space. The many-body process is built up from concurrently occurring single particle processes that are characterized by different momenta. These momenta correspond to the chemical potentials of systems with decreasing particle number. The many-boson process exhibits exciting collective phenomena: the escaping particles fragment and lose their coherence with the source and among each other, whilst correlations build up within the system. The detailed understanding of the many-body process is used to devise and test a scheme to control the final state, momentum distributions and even the correlation dynamics of the tunneling process.

CFN Lectures on Functional Nanostructures - Volume 2

CFN Lectures on Functional Nanostructures - Volume 2
Author : Christian Röthig,Gerd Schön,Matthias Vojta
Publisher : Springer
Release Date : 2011-08-24
Category : Science
Total pages :178
GET BOOK

This series of books contains selected and edited lectures from summer schools organized by the Center for Functional nanostructures (CFN) at the University of Karlsruhe. The mission of the CFN is to carry out research in the following areas: nanophotonics, nanoelectronics, molecular nanostructures and nanostructured materials. The aim of the summer schools is mainly to exchange new ideas and illustrate emerging research methodologies through a series of topical, introductory lectures. This is reflected by both the selection of topics addressed in the present volume, nanoelectronics, as well as the tutorial aspect of the contributions.