June 15, 2021

Download Ebook Free Verification, Validation And Uncertainty Quantification Of Multi-physics Modeling Of Nuclear Reactors

Verification, Validation and Uncertainty Quantification of Multi-Physics Modeling of Nuclear Reactors

Verification, Validation and Uncertainty Quantification of Multi-Physics Modeling of Nuclear Reactors
Author : Maria Avramova,Kostadin Ivanov
Publisher : Woodhead Publishing Series in
Release Date : 2018-09-15
Category : Technology & Engineering
Total pages :300
GET BOOK

Verification, Validation and Uncertainty Quantification in Multi-Physics Modeling of Nuclear Reactors is a key reference for those tasked with ensuring the credibility and reliability of engineering models and simulations for the nuclear industry and nuclear energy research. Sections discuss simulation challenges and revise key definitions, concepts and terminology. Chapters cover solution verification, the frontier discipline of multi-physics coupling verification, model validation and its applications to single and multi-scale models, and uncertainty quantification. This essential guide will greatly assist engineers, scientists, regulators and students in applying rigorous verification, validation and uncertainty quantification methodologies to the M&S tools used in the industry. The book contains a strong focus on the verification and validation procedures required for the emerging multi-physics M&S tools that have great potential for use in the licensing of new reactors, as well as for power uprating and life extensions of operating reactors. Uniquely--and crucially for nuclear engineers--demonstrates the application of verification, validation and uncertainty methodologies to the modeling and simulation (M&S) of nuclear reactors Equips the reader to develop a rigorously defensible validation process irrespective of the particular M&S tool used Brings the audience up-to-speed on validation methods for traditional M&S tools Extends the discussion to the emerging area of validation of multi-physics and multi-scale nuclear reactor simulations

Improved Best Estimate Plus Uncertainty Methodology Including Advanced Validation Concepts to License Evolving Nuclear Reactors

Improved Best Estimate Plus Uncertainty Methodology Including Advanced Validation Concepts to License Evolving Nuclear Reactors
Author : Anonim
Publisher : Unknown
Release Date : 2010
Category :
Total pages :129
GET BOOK

Many evolving nuclear energy programs plan to use advanced predictive multi-scale multi-physics simulation and modeling capabilities to reduce cost and time from design through licensing. Historically, the role of experiments was primary tool for design and understanding of nuclear system behavior while modeling and simulation played the subordinate role of supporting experiments. In the new era of multi-scale multi-physics computational based technology development, the experiments will still be needed but they will be performed at different scales to calibrate and validate models leading predictive simulations. Cost saving goals of programs will require us to minimize the required number of validation experiments. Utilization of more multi-scale multi-physics models introduces complexities in the validation of predictive tools. Traditional methodologies will have to be modified to address these arising issues. This paper lays out the basic aspects of a methodology that can be potentially used to address these new challenges in design and licensing of evolving nuclear technology programs. The main components of the proposed methodology are verification, validation, calibration, and uncertainty quantification. An enhanced calibration concept is introduced and is accomplished through data assimilation. The goal is to enable best-estimate prediction of system behaviors in both normal and safety related environments. To achieve this goal requires the additional steps of estimating the domain of validation and quantification of uncertainties that allow for extension of results to areas of the validation domain that are not directly tested with experiments, which might include extension of the modeling and simulation (M & S) capabilities for application to full-scale systems. The new methodology suggests a formalism to quantify an adequate level of validation (predictive maturity) with respect to required selective data so that required testing can be minimized for cost saving purposes by showing further testing wold not enhance the quality of the validation of predictive tools. The proposed methodology is at a conceptual level. When matured and if considered favorably by the stakeholders, it could serve as a new framework for the next generation of the best estimate plus uncertainty licensing methodology that USNRC developed previously. In order to come to that level of maturity it is necessary to communicate the methodology to scientific, design and regulatory stakeholders for discussion and debates. This paper is the first step to establish this communication.

Uncertainty Quantification in Multiscale Materials Modeling

Uncertainty Quantification in Multiscale Materials Modeling
Author : Yan Wang,David L. McDowell
Publisher : Woodhead Publishing
Release Date : 2020-03-10
Category : Technology & Engineering
Total pages :604
GET BOOK

Uncertainty Quantification in Multiscale Materials Modeling provides a complete overview of uncertainty quantification (UQ) in computational materials science. It provides practical tools and methods along with examples of their application to problems in materials modeling. UQ methods are applied to various multiscale models ranging from the nanoscale to macroscale. This book presents a thorough synthesis of the state-of-the-art in UQ methods for materials modeling, including Bayesian inference, surrogate modeling, random fields, interval analysis, and sensitivity analysis, providing insight into the unique characteristics of models framed at each scale, as well as common issues in modeling across scales. Synthesizes available UQ methods for materials modeling Provides practical tools and examples for problem solving in modeling material behavior across various length scales Demonstrates UQ in density functional theory, molecular dynamics, kinetic Monte Carlo, phase field, finite element method, multiscale modeling, and to support decision making in materials design Covers quantum, atomistic, mesoscale, and engineering structure-level modeling and simulation

Model Validation and Uncertainty Quantification, Volume 3

Model Validation and Uncertainty Quantification, Volume 3
Author : H. Sezer Atamturktur,Babak Moaveni,Costas Papadimitriou,Tyler Schoenherr
Publisher : Springer Science & Business Media
Release Date : 2014-04-11
Category : Technology & Engineering
Total pages :427
GET BOOK

This third volume of eight from the IMAC - XXXII Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Structural Dynamics, including papers on: Linear Systems Substructure Modelling Adaptive Structures Experimental Techniques Analytical Methods Damage Detection Damping of Materials & Members Modal Parameter Identification Modal Testing Methods System Identification Active Control Modal Parameter Estimation Processing Modal Data

Towards a Supported Common NEAMS Software Stack

Towards a Supported Common NEAMS Software Stack
Author : Anonim
Publisher : Unknown
Release Date : 2012
Category :
Total pages :129
GET BOOK

The NEAMS IPSC's are developing multidimensional, multiphysics, multiscale simulation codes based on first principles that will be capable of predicting all aspects of current and future nuclear reactor systems. These new breeds of simulation codes will include rigorous verification, validation and uncertainty quantification checks to quantify the accuracy and quality of the simulation results. The resulting NEAMS IPSC simulation codes will be an invaluable tool in designing the next generation of Nuclear Reactors and also contribute to a more speedy process in the acquisition of licenses from the NRC for new Reactor designs. Due to the high resolution of the models, the complexity of the physics and the added computational resources to quantify the accuracy/quality of the results, the NEAMS IPSC codes will require large HPC resources to carry out the production simulation runs.

Expansion of the Severe Accident Code MELCOR by Coupling External Models

Expansion of the Severe Accident Code MELCOR by Coupling External Models
Author : Dietrich, Philipp
Publisher : KIT Scientific Publishing
Release Date : 2017-02-20
Category : Heat
Total pages :162
GET BOOK

High-Performance Computing Applications in Numerical Simulation and Edge Computing

High-Performance Computing Applications in Numerical Simulation and Edge Computing
Author : Changjun Hu,Wen Yang,Congfeng Jiang,Dong Dai
Publisher : Springer Nature
Release Date : 2019-08-28
Category : Computers
Total pages :247
GET BOOK

This book constitutes the referred proceedings of two workshops held at the 32nd ACM International Conference on Supercomputing, ACM ICS 2018, in Beijing, China, in June 2018. This volume presents the papers that have been accepted for the following workshops: Second International Workshop on High Performance Computing for Advanced Modeling and Simulation in Nuclear Energy and Environmental Science, HPCMS 2018, and First International Workshop on HPC Supported Data Analytics for Edge Computing, HiDEC 2018. The 20 full papers presented during HPCMS 2018 and HiDEC 2018 were carefully reviewed and selected from numerous submissions. The papers reflect such topics as computing methodologies; parallel algorithms; simulation types and techniques; machine learning.

Energy and Water Development Appropriations for 2001: Department of Energy

Energy and Water Development Appropriations for 2001: Department of Energy
Author : United States. Congress. House. Committee on Appropriations. Subcommittee on Energy and Water Development
Publisher : Unknown
Release Date : 2000
Category : Energy development
Total pages :129
GET BOOK

IAEA Coordinated Research Project on HTGR Reactor Physics, Thermal-hydraulics and Depletion Uncertainty Analysis

IAEA Coordinated Research Project on HTGR Reactor Physics, Thermal-hydraulics and Depletion Uncertainty Analysis
Author : Anonim
Publisher : Unknown
Release Date : 2015
Category :
Total pages :68
GET BOOK

The continued development of High Temperature Gas Cooled Reactors (HTGRs) requires verification of HTGR design and safety features with reliable high fidelity physics models and robust, efficient, and accurate codes. The predictive capability of coupled neutronics/thermal-hydraulics and depletion simulations for reactor design and safety analysis can be assessed with sensitivity analysis (SA) and uncertainty analysis (UA) methods. Uncertainty originates from errors in physical data, manufacturing uncertainties, modelling and computational algorithms. (The interested reader is referred to the large body of published SA and UA literature for a more complete overview of the various types of uncertainties, methodologies and results obtained). SA is helpful for ranking the various sources of uncertainty and error in the results of core analyses. SA and UA are required to address cost, safety, and licensing needs and should be applied to all aspects of reactor multi-physics simulation. SA and UA can guide experimental, modelling, and algorithm research and development. Current SA and UA rely either on derivative-based methods such as stochastic sampling methods or on generalized perturbation theory to obtain sensitivity coefficients. Neither approach addresses all needs. In order to benefit from recent advances in modelling and simulation and the availability of new covariance data (nuclear data uncertainties) extensive sensitivity and uncertainty studies are needed for quantification of the impact of different sources of uncertainties on the design and safety parameters of HTGRs. Only a parallel effort in advanced simulation and in nuclear data improvement will be able to provide designers with more robust and well validated calculation tools to meet design target accuracies. In February 2009, the Technical Working Group on Gas-Cooled Reactors (TWG-GCR) of the International Atomic Energy Agency (IAEA) recommended that the proposed Coordinated Research Program (CRP) on the HTGR Uncertainty Analysis in Modelling (UAM) be implemented. This CRP is a continuation of the previous IAEA and Organization for Economic Co-operation and Development (OECD)/Nuclear Energy Agency (NEA) international activities on Verification and Validation (V & V) of available analytical capabilities for HTGR simulation for design and safety evaluations [1], [2], [3]. Within the framework of these activities different numerical and experimental benchmark problems were performed and insight was gained about specific physics phenomena and the adequacy of analysis methods.

Evaluation, Construction, and Verification of a Subchannel Steady State Heat Transfer Code for Plate-fueled Reactors

Evaluation, Construction, and Verification of a Subchannel Steady State Heat Transfer Code for Plate-fueled Reactors
Author : Cory Landon Griffard
Publisher : Unknown
Release Date : 2015
Category : Heat
Total pages :267
GET BOOK

Several high performance research reactors use plate fuel that is clad with aluminum and cooled with forced convection of subcooled water. High resolution multiphysics simulation tools have been developed to allow the performance of the core in these reactors to be assessed in more detail. The high resolution multiphysics (HRMP) simulation tools must go through verification and validation (V&V) to ensure the additional detail of the outcomes is accompanied with quantifiable uncertainties and confidence intervals. As an example of V&V, a one-dimensional subchannel code with conventional engineering flow and heat transfer models may be used to check the performance of a three-dimensional computational fluid dynamics assessment. This work develops a plate-fueled reactor subchannel steady state heat transfer code (PFSC) using a one-dimensional subchannel model. V&V is done for the PFSC by deriving several key equations, which are used in the subchannel heat transfer analysis, from the Reynolds Transport Theorem. This activity allows the subchannel model to be extended to include uncertainties and biases associated with the modeling simplifications, which can extend the utility of the subchannel model as a tool for testing the HRMP model. The initial basis for the development of the subchannel code is the High Flux Isotope Reactor (HFIR), which is a leading example of a high performance plate-fueled research reactor. The PFSC includes new features from the existing HFIR Steady State Heat Transfer Code (SSHTC) such as density and elevation changes in the momentum and energy equations, friction losses and internal heat generation in the energy equation, more accurate correlations for the thermophysical properties of water, new models used as limiting criteria in the reactor analysis, and flags that separate the heat transfer and fluid flow from fuel plate surface oxidation and deflections. A code to code comparison is done between the new flexible subchannel code and the HFIR SSHTC, as well as a comparison to an analytical solution for a simplified case with uniform heat flux and constant fluid properties. Biases associated with the one-dimensional assessment of the subchannel model are also reviewed. These activities provide quality assurance for the PFSC.

American National Standard for the Determination of Steady State Neutron Reaction Rate Distributions and Reactivity of Nuclear Reactors

American National Standard for the Determination of Steady State Neutron Reaction Rate Distributions and Reactivity of Nuclear Reactors
Author : American Nuclear Society
Publisher : Unknown
Release Date : 1996
Category : Nuclear reactors
Total pages :25
GET BOOK

Government Reports Announcements & Index

Government Reports Announcements & Index
Author : Anonim
Publisher : Unknown
Release Date : 1989
Category : Science
Total pages :129
GET BOOK

Energy Research Abstracts

Energy Research Abstracts
Author : Anonim
Publisher : Unknown
Release Date : 1995
Category : Power resources
Total pages :129
GET BOOK

Includes all works deriving from DOE, other related government-sponsored information and foreign nonnuclear information.

Nuclear News

Nuclear News
Author : Anonim
Publisher : Unknown
Release Date : 1982
Category : Nuclear energy
Total pages :129
GET BOOK

Transactions of the American Nuclear Society

Transactions of the American Nuclear Society
Author : American Nuclear Society
Publisher : Unknown
Release Date : 1999
Category : Nuclear engineering
Total pages :129
GET BOOK

Each volume contains proceedings of the annual conference of the American Nuclear Society.