Download Ebook Free Viability, Invariance And Applications
Viability, Invariance and Applications
Publisher : Elsevier
Release Date : 2007-07-18
Category : Mathematics
Total pages :356
GET BOOK
The book is an almost self-contained presentation of the most important concepts and results in viability and invariance. The viability of a set K with respect to a given function (or multi-function) F, defined on it, describes the property that, for each initial data in K, the differential equation (or inclusion) driven by that function or multi-function) to have at least one solution. The invariance of a set K with respect to a function (or multi-function) F, defined on a larger set D, is that property which says that each solution of the differential equation (or inclusion) driven by F and issuing in K remains in K, at least for a short time. The book includes the most important necessary and sufficient conditions for viability starting with Nagumo’s Viability Theorem for ordinary differential equations with continuous right-hand sides and continuing with the corresponding extensions either to differential inclusions or to semilinear or even fully nonlinear evolution equations, systems and inclusions. In the latter (i.e. multi-valued) cases, the results (based on two completely new tangency concepts), all due to the authors, are original and extend significantly, in several directions, their well-known classical counterparts. New concepts for multi-functions as the classical tangent vectors for functions Provides the very general and necessary conditions for viability in the case of differential inclusions, semilinear and fully nonlinear evolution inclusions Clarifying examples, illustrations and numerous problems, completely and carefully solved Illustrates the applications from theory into practice Very clear and elegant style
Viability Theory
Publisher : Springer Science & Business Media
Release Date : 2011-07-13
Category : Science
Total pages :803
GET BOOK
Viability theory designs and develops mathematical and algorithmic methods for investigating the adaptation to viability constraints of evolutions governed by complex systems under uncertainty that are found in many domains involving living beings, from biological evolution to economics, from environmental sciences to financial markets, from control theory and robotics to cognitive sciences. It involves interdisciplinary investigations spanning fields that have traditionally developed in isolation. The purpose of this book is to present an initiation to applications of viability theory, explaining and motivating the main concepts and illustrating them with numerous numerical examples taken from various fields.
Differential Equations
Publisher : World Scientific
Release Date : 2004
Category : Mathematics
Total pages :401
GET BOOK
This book presents the main concepts and results of differential equations, and offers the reader another point of view concerning a possible way to approach the problems of existence, uniqueness, approximation, and continuation of the solutions to a Cauchy problem. In addition, it contains simple introductions to some topics which are not usually included in classical textbooks: the exponential formula, conservation laws, generalized solutions, Caratheodory solutions, differential inclusions, variational inequalities, viability, invariance, gradient systems.
Co-Semigroups and Applications
Publisher : Elsevier
Release Date : 2003-03-21
Category : Mathematics
Total pages :396
GET BOOK
The book contains a unitary and systematic presentation of both classical and very recent parts of a fundamental branch of functional analysis: linear semigroup theory with main emphasis on examples and applications. There are several specialized, but quite interesting, topics which didn't find their place into a monograph till now, mainly because they are very new. So, the book, although containing the main parts of the classical theory of Co-semigroups, as the Hille-Yosida theory, includes also several very new results, as for instance those referring to various classes of semigroups such as equicontinuous, compact, differentiable, or analytic, as well as to some nonstandard types of partial differential equations, i.e. elliptic and parabolic systems with dynamic boundary conditions, and linear or semilinear differential equations with distributed (time, spatial) measures. Moreover, some finite-dimensional-like methods for certain semilinear pseudo-parabolic, or hyperbolic equations are also disscussed. Among the most interesting applications covered are not only the standard ones concerning the Laplace equation subject to either Dirichlet, or Neumann boundary conditions, or the Wave, or Klein-Gordon equations, but also those referring to the Maxwell equations, the equations of Linear Thermoelasticity, the equations of Linear Viscoelasticity, to list only a few. Moreover, each chapter contains a set of various problems, all of them completely solved and explained in a special section at the end of the book. The book is primarily addressed to graduate students and researchers in the field, but it would be of interest for both physicists and engineers. It should be emphasised that it is almost self-contained, requiring only a basic course in Functional Analysis and Partial Differential Equations.
Analele Științifice Ale Universității "Al. I. Cuza" Din Iași
Publisher : Unknown
Release Date : 2008
Category : Mathematics
Total pages :129
GET BOOK
System Modeling and Optimization
Publisher : Springer
Release Date : 2014-11-27
Category : Computers
Total pages :361
GET BOOK
This book is a collection of thoroughly refereed papers presented at the 26th IFIP TC 7 Conference on System Modeling and Optimization, held in Klagenfurt, Austria, in September 2013. The 34 revised papers were carefully selected from numerous submissions. They cover the latest progress in a wide range of topics such as optimal control of ordinary and partial differential equations, modeling and simulation, inverse problems, nonlinear, discrete, and stochastic optimization as well as industrial applications.
Nonlinear Partial Differential Equations with Applications
Publisher : Springer Science & Business Media
Release Date : 2005-09-16
Category : Mathematics
Total pages :405
GET BOOK
This book primarily concerns quasilinear and semilinear elliptic and parabolic partial differential equations, inequalities, and systems. The exposition quickly leads general theory to analysis of concrete equations, which have specific applications in such areas as electrically (semi-) conductive media, modeling of biological systems, and mechanical engineering. Methods of Galerkin or of Rothe are exposed in a large generality.
Value Functions in Control Systems and Differential Games
Publisher : Unknown
Release Date : 2003
Category : Control theory
Total pages :119
GET BOOK
Differential Equations
Publisher : World Scientific Publishing Company
Release Date : 2016-05-30
Category : Mathematics
Total pages :528
GET BOOK
This book presents, in a unitary frame and from a new perspective, the main concepts and results of one of the most fascinating branches of modern mathematics, namely differential equations, and offers the reader another point of view concerning a possible way to approach the problems of existence, uniqueness, approximation, and continuation of the solutions to a Cauchy problem. In addition, it contains simple introductions to some topics which are not usually included in classical textbooks: the exponential formula, conservation laws, generalized solutions, Caratheodory solutions, differential inclusions, variational inequalities, viability, invariance, and gradient systems. In this new edition, some typos have been corrected and two new topics have been added: Delay differential equations and differential equations subjected to nonlocal initial conditions. The bibliography has also been updated and expanded.
Differential Equations
Publisher : World Scientific Publishing Company
Release Date : 2011-05-26
Category : Mathematics
Total pages :480
GET BOOK
This book presents, in a unitary frame and from a new perspective, the main concepts and results of one of the most fascinating branches of modern mathematics, namely differential equations, and offers the reader another point of view concerning a possible way to approach the problems of existence, uniqueness, approximation, and continuation of the solutions to a Cauchy problem. In addition, it contains simple introductions to some topics which are not usually included in classical textbooks: the exponential formula, conservation laws, generalized solutions, Caratheodory solutions, differential inclusions, variational inequalities, viability, invariance, gradient systems. In this new edition we have corrected several small errors and added the following new topics: Volterra Integral Equations and Elements of Calculus of Variations. Some problems and exercises, referring to these two new topics are also included. The bibliography has been updated and expanded.
Mathematical Analysis and Applications
Publisher : American Institute of Physics
Release Date : 2006-05-25
Category : Mathematics
Total pages :167
GET BOOK
This book comprises the proceedings of the International Conference on Mathematical Analysis and Applications, held in Craiova, Romania, 23-24 September 2005. The peer-reviewed papers presented here cover a range of topics at the interface between mathematical physics, numerical analysis, optimal control, and calculus of variations. The coverage includes nonlinear analysis and partial differential equations as well as classical mathematical analysis and dynamical systems.
Dynamic Systems and Applications
Publisher : Unknown
Release Date : 2003
Category : Differentiable dynamical systems
Total pages :129
GET BOOK
SIAM Journal on Control and Optimization
Publisher : Unknown
Release Date : 2002
Category : Control theory
Total pages :129
GET BOOK
Consistency Problems for Heath-Jarrow-Morton Interest Rate Models
Publisher : Springer
Release Date : 2004-11-02
Category : Mathematics
Total pages :138
GET BOOK
Bond markets differ in one fundamental aspect from standard stock markets. While the latter are built up to a finite number of trade assets, the underlying basis of a bond market is the entire term structure of interest rates: an infinite-dimensional variable which is not directly observable. On the empirical side, this necessitates curve-fitting methods for the daily estimation of the term structure. Pricing models, on the other hand, are usually built upon stochastic factors representing the term structure in a finite-dimensional state space. Written for readers with knowledge in mathematical finance (in particular interest rate theory) and elementary stochastic analysis, this research monograph has threefold aims: to bring together estimation methods and factor models for interest rates, to provide appropriate consistency conditions and to explore some important examples.
Journal of analysis and its application
Publisher : Unknown
Release Date : 2004
Category : Mathematical analysis
Total pages :129
GET BOOK